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Preface

In the field of statistics, we are usually interested in studying some phenomenon.
To this end, we acquire a sample of observations which we consider as realizations
from a probability distribution with one or more parameters. In frequentist statis-
tics, we regard those parameters as some unknown constants. Our goal is to draw
inferences about them and use those inferences to answer any questions we might
have about the phenomenon under study. As one might surmise, the study of statis-
tics requires a thorough knowledge of probability distributions and their properties.
Chapter 1 of this textbook summarizes some useful elements of distribution theory
and chapter 2 introduces an important family of probability distributions with many
useful applications in statistics.

Suppose we are interested in ascertaining whether a new cholesterol drug is effec-
tive or not. We prescribe the drug to 100 volunteers with a family history of high
cholesterol and measure whether their cholesterol levels have dropped after 3 months
of taking the new drug. For i = 1, 2, . . . , 100, we define:

Xi =

1, cholesterol levels of volunteer i dropped

0, cholesterol levels of volunteer i didn’t drop
.

Suppose that Xi ∼ Bernoulli(p) for i = 1, 2, . . . , 100, where p is the unknown prob-
ability of success of the new cholesterol drug. A good first step in our statistical
analysis would be to obtain a logical estimate of the unknown parameter p based on
the obtained sample of observations x1, . . . , x100. One might correctly deduce that
the proportion of volunteers whose cholesterol levels dropped after being on the new
cholesterol drug for 3 months is a good estimate of the probability p. If that propor-
tion is "comfortably" larger than 50%, then that’s a sign towards the effectiveness of
the new cholesterol drug. Chapter 3 rigorously introduces some methods of specifying
such estimates of unknown parameters and presents several criteria based on which
different estimates of the same unknown parameter may be compared against each
other to determine the "best" among them. These criteria mainly aim at providing
some "guarantees" that the value of the point estimate is going to lie close to the true
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value of the unknown parameter with high probability.

Obtaining a point estimate of the unknown parameter is usually not enough, since
its value depends on the sample we happened to collect and doesn’t provide us with
any information about how the values of the same estimate based on samples that
other people might collect are distributed. In other words, we also want a measure of
how far away the most probable values of the estimate could lie from our specific point
estimate. Thus, we get the idea for the construction of an interval which contains all
the most probable values of the estimate. That interval is constructed in such a way
that it contains the true value of the unknown parameter with some specified level of
"confidence". In our previous example, if we arrive at an interval whose lower endpoint
lies above 0.5, then that provides us with strong evidence that the new cholesterol
drug is actually effective. Chapter 4 presents different methodologies according to
which such confidence intervals are constructed.

Finally, we are interested in checking the validity of hypotheses such as whether
the unknown parameter takes a specific set of values based on the evidence contained
in our sample. For example, we might be interested in knowing whether the proba-
bility of success of the new cholesterol drug is greater than 0.5 or not, i.e. whether
the drug is effective or not. Chapter 5 sets the foundations of the framework for con-
ducting such hypothesis tests in frequentist statistics and introduces several methods
for obtaining decision rules based on the observed sample in such settings.

Bill Katsianos
Panos Andreou
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Chapter 1

Elements of Probability
Distributions

1.1 Discrete Distributions

Definition 1.1. (Probability Mass Function - PMF)

fX(x) = P(X = x), x ∈ S = {x0, x1, . . . }

Proposition 1.1. (Properties of PMFs)

i. 0 ⩽ fX(x) ⩽ 1, x ∈ S = {x0, x1, . . . };

ii.
∑

x∈S fX(x) = 1.

Definition 1.2. (Cumulative Distribution Function - CDF)

FX(x) = P(X ⩽ x) =
∑
y⩽x

P(X = y) =
∑
y⩽x

fX(y), x ∈ R

Definition 1.3. (Expected Value) If
∑

x∈S |x|fX(x) <∞, then:

E(X) =
∑
x∈S

xfX(x).

Definition 1.4. (Indicator Random Variable)

X = 1A(Y ) =

1, Y ∈ A

0, Y /∈ A

It holds that E(X) = 1 · P(Y ∈ A) + 0 · P(Y /∈ A) = P(Y ∈ A).
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Definition 1.5. (Variance) If
∑

x∈S x
2fX(x) <∞, then:

Var(X) = E
[
(X − E(X))2

]
= E

(
X2
)
− [E(X)]2 .

Theorem 1.1. (Law of the Unconscious Statistician)

E [g(X)] =
∑
x∈S

g(x)fX(x)

Definition 1.6. (Independence)

X,Y independent ⇔ P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀A,B ⊆ R

⇔ fX,Y (x, y) = fX(x)fY (y), ∀x ∈ SX , ∀y ∈ SY .

Definition 1.7. (Moment Generating Function - MGF)

MX(t) = E
(
etX
)
=
∑
x∈S

etxfX(x)

Notable Discrete Distributions

Bernoulli Distribution - Bernoulli(p), p ∈ (0, 1): Success/failure in 1 trial

fX(x) = px(1− p)1−x, x ∈ {0, 1},

E(X) = p, Var(X) = p(1− p),

MX(t) = pet + 1− p, t ∈ R,

X, Y ∼ Bernoulli(p) independent ⇒ X + Y ∼ Bin(2, p).

Binomial Distribution - Bin(N, p), N ∈ N, p ∈ (0, 1): Number of successes in N

trials
fX(x) =

(
N

x

)
px(1− p)N−x, x ∈ {0, 1, . . . , N},

E(X) = Np, Var(X) = Np(1− p),

MX(t) =
(
pet + 1− p

)N
, t ∈ R,

X ∼ Bin(N, p), Y ∼ Bin(M,p) independent ⇒ X + Y ∼ Bin(N +M,p).

Geometric Distribution - Geom(p), p ∈ (0, 1): Number of trials until the first
success

fX(x) = p(1− p)x−1, x ∈ {1, 2, . . . },
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E(X) =
1

p
, Var(X) =

1

p2
,

MX(t) =
pet

1− (1− p)et
, t < − log(1− p),

X, Y ∼ Geom(p) independent ⇒ X + Y ∼ NegBin(2, p).

Geometric Distribution - Geom(p), p ∈ (0, 1): Number of failures until the first
success

fX(x) = p(1− p)x, x ∈ {0, 1, . . . },

E(X) =
1− p

p
, Var(X) =

1− p

p2
,

MX(t) =
p

1− (1− p)et
, t < − log(1− p),

X, Y ∼ Geom(p) independent ⇒ X + Y ∼ NegBin(2, p).

Negative Binomial Distribution - NegBin(N, p), N ∈ N, p ∈ (0, 1): Number of
trials until the N -th success

fX(x) =

(
x− 1

N − 1

)
pN (1− p)x−N , x ∈ {N,N + 1, . . . },

E(X) =
N

p
, Var(X) =

N

p2
,

MX(t) =

[
pet

1− (1− p)et

]N
, t < − log(1− p),

X ∼ NegBin(N, p), Y ∼ NegBin(M,p) independent ⇒ X+Y ∼ NegBin(N +M,p).

Negative Binomial Distribution - NegBin(N, p), N ∈ N, p ∈ (0, 1): Number of
failures until the N -th success

fX(x) =

(
x+N − 1

N − 1

)
pN (1− p)x, x ∈ {0, 1, . . . },

E(X) = N
1− p

p
, Var(X) = N

1− p

p2
,

MX(t) =

[
p

1− (1− p)et

]N
, t < − log(1− p),

X ∼ NegBin(N, p), Y ∼ NegBin(M,p) independent ⇒ X+Y ∼ NegBin(N +M,p).

Poisson Distribution - Poisson(λ), λ > 0: Number of events in a fixed time interval

fX(x) = e−λ
λx

x!
, x ∈ {0, 1, . . . },

E(X) = Var(X) = λ,
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MX(t) = eλ(e
t−1),

X ∼ Poisson(λ), Y ∼ Poisson(µ) independent ⇒ X + Y ∼ Poisson(λ+ µ).

1.2 Continuous Distributions

Definition 1.8. (Probability Density Function - PDF) Function fX : R → [0,∞)

such that:
P(X ∈ A) =

∫
A
fX(x)dx, A ⊆ R.

Definition 1.9. (Cumulative Distribution Function - CDF)

FX(x) = P(X ⩽ x) =

∫ x

−∞
fX(y)dy, x ∈ R

Proposition 1.2. (Properties of PDFs and CDFs)

i. fX(x) ⩾ 0, x ∈ R;

ii.
∫
R fX(x)dx = 1;

iii.
∫ b
a fX(x)dx = P(a < X < b) = P(a ⩽ X ⩽ b) = P(a < X ⩽ b) = P(a ⩽ X < b);

iv. P(X = x) = 0, x ∈ R;

v. fX(x) = F ′
X(x), x ∈ R;

vi. FX strictly increasing on the set S = {x ∈ R : fX(x) > 0}.

Definition 1.10. (Expected Value) If
∫
R |x|fX(x)dx <∞, then:

E(X) =

∫
R
xfX(x)dx.

Proposition 1.3. If X ⩾ 0, i.e. fX(x) = 0 ∀x < 0, then:

E
(
Xk
)
=

∫ ∞

0
kxk−1 [1− FX(x)] dx, k > 0.

In particular, it holds that:

E (X) =

∫ ∞

0
[1− FX(x)] dx.

Definition 1.11. (Variance) If
∫
R x

2fX(x)dx <∞, then:

Var(X) = E
[
(X − E(X))2

]
= E

(
X2
)
− [E(X)]2 .
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Theorem 1.2. (Law of the Unconscious Statistician)

E [g(X)] =

∫
R
g(x)fX(x)dx

Definition 1.12. (Independence)

X,Y independent ⇔ P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀A,B ⊆ R

⇔ fX,Y (x, y) = fX(x)fY (y), ∀x, y ∈ R

Definition 1.13. (Moment Generating Function - MGF)

MX(t) = E
(
etX
)
=

∫
R
etxfX(x)dx

Definition 1.14. (Gamma Function)

Γ(k) =

∫ ∞

0
xk−1e−xdx, k > 0

Proposition 1.4. (Properties of the Gamma Function)

i. Γ(k) = (k − 1)Γ(k − 1), k > 1;

ii. Γ(k) = (k − 1)!, k ∈ N.

Notable Continuous Distributions

Continuous Uniform Distribution - U(ϑ1, ϑ2), ϑ1 < ϑ2: Random number selec-
tion on the interval [ϑ1, ϑ2]

fX(x) =
1

ϑ2 − ϑ1
, FX(x) =

x− ϑ1
ϑ2 − ϑ1

, x ∈ [ϑ1, ϑ2],

E(X) =
ϑ1 + ϑ2

2
, Var(X) =

(ϑ2 − ϑ1)
2

12
,

MX(t) =


eϑ2t−eϑ1t

(ϑ2−ϑ1)t , t ̸= 0

1, t = 0
,

X ∼ U(ϑ1, ϑ2) ⇒ U =
X − ϑ1
ϑ2 − ϑ1

∼ U(0, 1),

U ∼ U(0, 1) ⇒ X = (ϑ2 − ϑ1)U + ϑ1 ∼ U(ϑ1, ϑ2).

Exponential Distribution - Exp(λ), λ > 0: Time between 2 events

fX(x) = λe−λx, FX(x) = 1− e−λx, x > 0,
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E(X) =
1

λ
, Var(X) =

1

λ2
,

MX(t) =
λ

λ− t
, t < λ,

X ∼ Exp(λ) ⇒ cX ∼ Exp (λ/c) , c > 0,

X ∼ Exp(λ), Y ∼ Exp(µ) independent ⇒ min{X,Y } ∼ Exp(λ+ µ),

X, Y ∼ Exp(λ) independent ⇒ X + Y ∼ Gamma(2, λ).

Gamma Distribution - Gamma(k, λ), k > 0, λ > 0

fX(x) =
λk

Γ(k)
xk−1e−λx, x > 0,

E(X) =
k

λ
, Var(X) =

k

λ2
,

MX(t) =

(
λ

λ− t

)k
, t < λ,

X ∼ Gamma(k, λ) ⇒ cX ∼ Gamma (k, λ/c) , c > 0,

X ∼ Gamma(k, λ), Y ∼ Gamma(ℓ, λ) independent ⇒ X + Y ∼ Gamma(k + ℓ, λ).

Normal Distribution - N
(
µ, σ2

)
, µ ∈ R, σ2 > 0

fX(x) =
1√
2πσ2

exp

{
− 1

2σ2
(x− µ)2

}
, x ∈ R,

E(X) = µ, Var(X) = σ2,

MX(t) = exp

{
µt+

1

2
σ2t2

}
, t ∈ R,

X ∼ N
(
µ, σ2

)
⇒ Z =

X − µ

σ
∼ N (0, 1),

Z ∼ N (0, 1) ⇒ X = σZ + µ ∼ N
(
µ, σ2

)
,

X ∼ N
(
µ1, σ

2
1

)
, Y ∼ N

(
µ2, σ

2
2

)
independent ⇒ X + Y ∼ N

(
µ1 + µ2, σ

2
1 + σ22

)
.

Beta Distribution - Beta(ϑ1, ϑ2), ϑ1 > 0, ϑ2 > 0

fX(x) =
Γ(ϑ1 + ϑ2)

Γ(ϑ1)Γ(ϑ2)
xϑ1−1(1− x)ϑ2−1, x ∈ (0, 1),

E(X) =
ϑ1

ϑ1 + ϑ2
, Var(X) =

ϑ1ϑ2
(ϑ1 + ϑ2 + 1)(ϑ1 + ϑ2)2

,

X ∼ Beta(ϑ1, ϑ2) ⇒ 1−X ∼ Beta (ϑ2, ϑ1) ,

X ∼ Beta(ϑ, 1) ⇒ Y = − logX ∼ Exp(ϑ),
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X ∼ Beta(1, ϑ) ⇒ Y = − log(1−X) ∼ Exp(ϑ),

Y ∼ Exp(ϑ) ⇒ X1 = e−Y ∼ Beta(ϑ, 1) and X2 = 1− e−Y ∼ Beta(1, ϑ).

1.3 Definitions and Properties

Definition 1.15. (Covariance) If E(XY ) <∞, then:

Cov(X,Y ) = E [(X − E(X)) (Y − E(Y ))] = E(XY )− E(X)E(Y ).

Proposition 1.5. (Properties of the Expected Value)

i. E(aX + b) = aE(X) + b;

ii. E(aX + bY ) = aE(X) + bE(Y );

iii. X,Y independent implies that E(XY ) = E(X)E(Y );

iv. a ⩽ X ⩽ b implies that a ⩽ E(X) ⩽ b;

v. X ⩽ Y implies that E(X) ⩽ E(Y ).

Proposition 1.6. (Properties of the Variance)

i. Var(X) ⩾ 0;

ii. Var(aX + b) = a2Var(X);

iii. Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y );

iv. X,Y independent implies that Var(aX + bY ) = a2Var(X) + b2Var(Y );

v. X,Y independent implies that Var(XY ) = E
(
X2
)
E
(
Y 2
)
− [E(X)E(Y )]2.

Proposition 1.7. (Properties of the Covariance)

i. Cov(X, a) = 0;

ii. Cov(X,X) = Var(X);

iii. Cov(Y,X) = Cov(X,Y );

iv. Cov(aX + b, cY + d) = acCov(X,Y );

v. Cov(X + Y, Z +W ) = Cov(X,Z) + Cov(X,W ) + Cov(Y, Z) + Cov(Y,W );

vi. X,Y independent implies that Cov(X,Y ) = 0.
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Definition 1.16. (Conditional Expectation of X given Y = y)

mX|Y (y) = E(X | Y = y) =


∑

x∈SX
xfX|Y (x | y), X discrete∫

R xfX|Y (x | y)dx, X continuous

Definition 1.17. (Conditional Expectation of X given Y )

E(X | Y ) = mX|Y (Y )

Theorem 1.3. (Law of Iterated Expectations)

E(X) = E [E(X | Y )] = E
[
mX|Y (Y )

]
=


∑

y∈SY
mX|Y (y)fY (y), Y discrete∫

RmX|Y (y)fY (y)dy, Y continuous

Proposition 1.8. (Properties of MGFs)

i. MX(t) = MY (t) ∀t ∈ R if and only if X, Y identically distributed (belonging to
the same family of distributions with the same parameter values);

ii. MaX+b(t) = ebtMX(at);

iii. M (k)
X (0) = E

(
Xk
)
, k ∈ N;

iv. X,Y independent implies that MX+Y (t) =MX(t)MY (t).

Proposition 1.9. (Notable Probabilistic Inequalities)

i. Markov’s Inequality: X ⩾ 0 ⇒ P(X ⩾ a) ⩽ E(X)
a , a > 0

ii. Chebyshev’s Inequality: P (|X − E(X)| ⩾ a) ⩽ Var(X)
a2

, a > 0

iii. Cauchy - Schwarz Inequality: [E(XY )]2 ⩽ E
(
X2
)
E
(
Y 2
)

iv. Covariance Inequality: [Cov(X,Y )]2 ⩽ Var (X)Var (Y )

v. Jensen’s Inequality: f convex implies that f (E(X)) ⩽ E [f(X)]

Note 1.1. An easy way to remember the direction in Jensen’s inequality is through
the non-negativity property of the variance of a random variable X. More specifically,
we know that:

Var(X) = E
(
X2
)
− [E(X)]2 ⩾ 0 ⇒ [E(X)]2 ⩽ E

(
X2
)

⇒

f (E(X)) ⩽ E [f(X)] ,

where f(x) = x2 is a convex function in R.



Chapter 2

Exponential Family of
Distributions

2.1 Introduction

The exponential family of distributions is a class of distributions which includes
many of the most widely used (discrete and continuous) distributions. Its usefulness
lies in the fact that the distributions which belong to it have some common properties,
which allow us to formulate various propositions that are valid for all them. Many well-
known results about these distributions can arise as special cases of these propositions.

Definition 2.1. i. The set Θ which contains all the values that an unknown pa-
rameter ϑ can take is called the parameter space.

ii. The set S = {x ∈ R : f(x;ϑ) > 0} is called the support of the distribution with
PMF or PDF f(x;ϑ).

2.2 One-parameter Exponential Family

Definition 2.2. A distribution with unknown parameter ϑ ∈ Θ ⊆ R and PMF or
PDF f(x;ϑ) for x ∈ S ⊆ R belongs to the one-parameter (full) exponential family if
the support S doesn’t depend on the value of ϑ and it holds that:

f(x;ϑ) = h(x)eQ(ϑ)T (x)−A(ϑ).

If Q(ϑ) = ϑ, then we say that the exponential family is in canonical form.

Note 2.1. Indicatively, we mention that the following distributions belong to the
one-parameter exponential family: Bernoulli, binomial with known number of trials,
geometric, negative binomial with known number of trials, Poisson and exponential.
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Proposition 2.1. If a random variable X has PMF or PDF f(x;ϑ) = h(x)eϑT (x)−A(ϑ)

in canonical form, then it holds that:

E[T (X)] = A′(ϑ), Var[T (X)] = A′′(ϑ), MT (t) = E
[
etT (X)

]
= eA(t+ϑ)−A(ϑ).

Proof. Without loss of generality, suppose that X is a continuous random variable.
We observe that: ∫

R
f(x;ϑ)dx = 1 ⇒

∫
R
h(x)eϑT (x)dx = eA(ϑ).

In differentiating this expression with respect to ϑ, we can interchange the order of
differentiation and integration by suitable application of the dominated convergence
theorem in order to get that:

∂

∂ϑ

∫
R
h(x)eϑT (x)dx = A′(ϑ)eA(ϑ) ⇒

∫
R
h(x)

∂

∂ϑ
eϑT (x)dx = A′(ϑ)eA(ϑ) ⇒

∫
R
h(x)T (x)eϑT (x)dx = A′(ϑ)eA(ϑ) ⇒

A′(ϑ) =

∫
R
T (x)h(x)eϑT (x)−A(ϑ)︸ ︷︷ ︸

f(x;ϑ)

dx = E[T (X)].

Similarly, we calculate that:∫
R
h(x)T 2(x)eϑT (x)dx =

[
A′(ϑ)

]2
eA(ϑ) +A′′(ϑ)eA(ϑ) ⇒

E
[
T 2(X)

]
=
[
A′(ϑ)

]2
+A′′(ϑ) ⇒

A′′(ϑ) = E
[
T 2(X)

]
− [E (T (X))]2 = Var [T (X)] .

As far as the moment generating function is concerned, we calculate that:

MT (t) =

∫
R
etT (x)f(x;ϑ)dx =

∫
R
etT (x)h(x)eϑT (x)−A(ϑ)dx

= e−A(ϑ)
∫
R
h(x)e(t+ϑ)T (x)dx

= eA(t+ϑ)−A(ϑ)
∫
R
h(x)e(t+ϑ)T (x)−A(t+ϑ)︸ ︷︷ ︸

f(x;t+ϑ)

dx

= eA(t+ϑ)−A(ϑ).

Note 2.2. If Q(ϑ) ̸= ϑ, then the exponential family may be converted to canonical
form with the reparameterization η = Q(ϑ).
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Example 2.1. (Binomial with known number of trials)

f(x; p) =

(
N

x

)
px(1− p)N−x =

(
N

x

)
ex log p+(N−x) log(1−p)

=

(
N

x

)
ex[log p−log(1−p)]+N log(1−p)

=

(
N

x

)
exp

{
x log

p

1− p
−N log

1

1− p

}
,

h(x) =

(
N

x

)
, Q(p) = log

p

1− p
, T (x) = x, A(p) = N log

1

1− p
.

Consider the following reparameterization:

η = log
p

1− p
∈ R ⇒ (1− p)eη = p ⇒ p =

eη

eη + 1
=

1

1 + e−η
,

f(x; η) =

(
N

x

)
eηx−N log(eη+1), A(η) = N log (eη + 1) .

Then, it follows that:

E [T (X)] = E(X) = A′(η) =
Neη

eη + 1
= Np,

Var [T (X)] = Var(X) = A′′(η) =
Neη

(eη + 1)2
=

Neη

eη + 1

1

eη + 1
= Np(1− p),

MT (t) =MX(t) = E
(
etX
)
= eA(t+η)−A(η) = eN log(et+η+1)−N log(eη+1)

= exp

{
N log

et+η + 1

eη + 1

}
=

(
eteη + 1

eη + 1

)N
=

(
eη

eη + 1
et +

1

eη + 1

)N
=
(
pet + 1− p

)N
, t ∈ R.

2.3 Multiparameter Exponential Family

Definition 2.3. A distribution with unknown parameter vector ϑ ∈ Θ ⊆ Rs and
PMF or PDF f(x;ϑ) for x ∈ S ⊆ R belongs to the multiparameter exponential family
if the support S doesn’t depend on the value of ϑ and it holds that:

f(x;ϑ) = h(x)e⟨Q(ϑ),T (x)⟩−A(ϑ),

where Q : Θ → Rd and T : S → Rd with d ⩾ s. If s = d, i.e. the dimension of the
vector ϑ is equal to the dimension of the range of the functions Q and T , then we say
that it constitutes a full exponential family. Otherwise, we say that it constitutes a
curved exponential family. If Q(ϑ) = ϑ, then we say that the exponential family is in
canonical form.
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Note 2.3. Indicatively, we mention that the following distributions belong to the
2-parameter full exponential family: normal, gamma and beta. In contrast, we can
easily see that the continuous uniform distribution on [ϑ1, ϑ2] does not belong to
the exponential family, since the support S = [ϑ1, ϑ2] depends on the value of the
parameter vector ϑ = (ϑ1, ϑ2).

Example 2.2. (Gamma)

f(x; k, λ) =
λk

Γ(k)
xk−1e−λx =

1

x
exp

{
k log x− λx− k log

1

λ
− log Γ(k)

}
,

h(x) =
1

x
, Q(k, λ) = (k,−λ), T (x) = (log x, x) , A(k, λ) = k log

1

λ
+ log Γ(k).

Hence, the gamma distribution belongs to the 2-parameter full exponential family.

Example 2.3. (Weibull) For k > 0, λ > 0 and x > 0, we calculate that:

f(x; k, λ) = kλxk−1e−λx
k
= kxk−1 exp

{
−λxk − log

1

λ

}
.

We observe that there exists no way to write the term λxk as a product of a function
of the parameter vector ϑ = (k, λ) and a function of x. Thus, the Weibull distribution
does not belong to the two-parameter exponential family. However, if k is a known
constant, then we calculate that:

f(x;λ) = kλxk−1e−λx
k
= kxk−1 exp

{
−λxk − log

1

λ

}
,

h(x) = kxk−1, Q(λ) = −λ, T (x) = xk, A(λ) = log
1

λ
.

Therefore, the Weibull distribution with known k belongs to the one-parameter expo-
nential family.

Proposition 2.2. If f(x;ϑ) = h(x)e⟨ϑ,T (x)⟩−A(ϑ) is the PMF or PDF of a random
variable X in canonical form, then the following hold for j, k = 1, 2, . . . , s:

E[Tj(X)] =
∂A

∂ϑj
, Var[Tj(X)] =

∂2A

∂ϑ2j
, Cov[Tj(X), Tk(X)] =

∂2A

∂ϑj∂ϑk
,

MT (t) = E
[
e⟨t,T (X)⟩

]
= eA(t+ϑ)−A(ϑ).

Proof. Without loss of generality, suppose that X is a continuous random variable.
We observe that:∫

R
f(x;ϑ)dx = 1 ⇒

∫
R
h(x)e⟨ϑ,T (x)⟩dx = eA(ϑ).
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In differentiating this expression with respect to ϑj , we can interchange the order of
differentiation and integration by suitable application of the dominated convergence
theorem in order to get that:∫

R
h(x)Tj(x)e

⟨ϑ,T (x)⟩dx =
∂A

∂ϑj
eA(ϑ) ⇒

∂A

∂ϑj
=

∫
R
Tj(x)h(x)e

⟨ϑ,T (x)⟩−A(ϑ)︸ ︷︷ ︸
f(x;ϑ)

dx = E[Tj(X)].

By differentiating with respect to ϑk, we calculate that:∫
R
h(x)Tj(x)Tk(x)e

⟨ϑ,T (x)⟩dx =

(
∂A

∂ϑj

∂A

∂ϑk
+

∂2A

∂ϑj∂ϑk

)
eA(ϑ) ⇒

E [Tj(X)Tk(X)] =
∂A

∂ϑj

∂A

∂ϑk
+

∂2A

∂ϑj∂ϑk
⇒

∂2A

∂ϑj∂ϑk
= E [Tj(X)Tk(X)]− E [Tj(X)]E [Tk(X)] = Cov [Tj(X), Tk(X)] .

For j = k, we observe that:

Cov [Tj(X), Tj(X)] = Var [Tj(X)] =
∂2A

∂ϑ2j
.

As far as the moment generating function is concerned, we calculate that:

MT (t) =

∫
R
e⟨t,T (x)⟩f(x;ϑ)dx =

∫
R
e⟨t,T (x)⟩h(x)e⟨ϑ,T (x)⟩−A(ϑ)dx

= e−A(ϑ)
∫
R
h(x)e⟨t+ϑ,T (x)⟩dx

= eA(t+ϑ)−A(ϑ)
∫
R
h(x)e⟨t+ϑ,T (x)⟩−A(t+ϑ)︸ ︷︷ ︸

f(x;t+ϑ)

dx

= eA(t+ϑ)−A(ϑ).

Note 2.4. If Q(ϑ) ̸= ϑ, then the exponential family may be converted to canonical
form with the reparameterization η = Q(ϑ).

Example 2.4. (Normal with mean ϑ1 and variance ϑ2)

f(x;ϑ) =
1√
2πϑ2

exp

{
− 1

2ϑ2
(x− ϑ1)

2

}
=

1√
2π

exp

{
ϑ1
ϑ2
x− 1

2ϑ2
x2 − ϑ21

2ϑ2
− 1

2
log ϑ2

}
,



22 CHAPTER 2. EXPONENTIAL FAMILY OF DISTRIBUTIONS

h(x) =
1√
2π
, Q(ϑ) =

(
ϑ1
ϑ2
,− 1

2ϑ2

)
, T (x) =

(
x, x2

)
, A(ϑ) =

ϑ21
2ϑ2

+
1

2
log ϑ2.

Consider the following reparameterization:

η = (η1, η2) =

(
ϑ1
ϑ2
,− 1

2ϑ2

)
∈ R× (−∞, 0) ⇒

ϑ2 = − 1

2η2
, ϑ1 = − η1

2η2
,

f(x; η) =
1√
2π

exp

{
η1x+ η2x

2 +
η21
4η2

+
1

2
log (−2η2)

}
,

A(η) = − η21
4η2

− 1

2
log (−2η2) .

Then, it follows that:

E [T1(X)] = E (X) =
∂A(η)

∂η1
= − η1

2η2
= ϑ1,

E [T2(X)] = E
(
X2
)
=
∂A(η)

∂η2
=

η21
4η22

− 1

2η2
= ϑ21 + ϑ2,

Var [T1(X)] = Var (X) =
∂2A(η)

∂η21
= − 1

2η2
= ϑ2,

Var [T2(X)] = Var
(
X2
)
=
∂2A(η)

∂η22
= − η21

2η32
+

1

2η22
= 4ϑ21ϑ2 + 2ϑ22,

Cov [T1(X), T2(X)] = Cov
(
X,X2

)
=
∂2A(η)

∂η1∂η2
=

η1
2η22

= 2ϑ1ϑ2.

Definition 2.4. A multivariate distribution with unknown parameter ϑ ∈ Θ ⊆ Rs

and joint PMF or PDF f(x;ϑ) for x ∈ S ⊆ Rn belongs to the multivariate exponential
family if the support S doesn’t depend on the value of ϑ and it holds that:

f(x;ϑ) = h(x)e⟨Q(ϑ),T (x)⟩−A(ϑ).

Proposition 2.3. Suppose that X1, . . . , Xn are independent and identically dis-
tributed (iid) random variables from a distribution which belongs to the univariate ex-
ponential family. Then, the joint distribution of the random vector X = (X1, . . . , Xn)

belongs to the multivariate exponential family with PMF or PDF given by:

f(x;ϑ) = h∗(x)e⟨Q(ϑ),T ∗(x)⟩−A∗(ϑ), x ∈ Sn,

h∗(x) =
n∏
i=1

h(xi), T ∗(x) =
n∑
i=1

T (xi), A∗(ϑ) = nA(ϑ).
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Proof. We calculate that:

f(x;ϑ) =
n∏
i=1

f(xi;ϑ) =
n∏
i=1

h(xi)e
⟨Q(ϑ),T (xi)⟩−A(ϑ)

=

n∏
i=1

h(xi) exp

{
n∑
i=1

⟨Q(ϑ), T (xi)⟩ − nA(ϑ)

}

= h∗(x) exp

{〈
Q(ϑ),

n∑
i=1

T (xi)

〉
−A∗(ϑ)

}
= h∗(x)e⟨Q(ϑ),T ∗(x)⟩−A∗(ϑ).
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Chapter 3

Point Estimation

3.1 Introduction

Definition 3.1. i. An n-dimensional random vector X = (X1, . . . , Xn) is called a
sample of size n.

ii. An n-dimensional random vector X = (X1, . . . , Xn) is called a random sample
of size n if the random variables X1, . . . , Xn are independent and identically
distributed (iid).

Definition 3.2. i. A function T (X) = T (X1, . . . , Xn) which doesn’t depend on the
value of the unknown parameter ϑ is called a statistic.

ii. A statistic T (X) is called an estimator of the parametric function g(ϑ) if it holds
that T (S) ⊆ g(Θ).

Note 3.1. As can be seen from the previous definition, we could consider any arbi-
trary function of the sample X as an estimator of ϑ, as long as this function takes
values on the parameter space Θ. However, this condition alone is not enough to
give us a good estimate of the true value of ϑ in practice. For this reason, various
criteria have been developed to judge whether an estimator of ϑ is "good" or not. In
this chapter we will study these criteria for "good" estimators, such as unbiasedness,
the mean squared error criterion, sufficiency, efficiency and consistency. At the end
of the chapter we will study 2 of the most widely used methods of finding estimators
- the maximum likelihood method and the method of moments.

3.2 Unbiased Estimators

Definition 3.3. i. A statistic T (X) is called an unbiased estimator of the paramet-
ric function g(ϑ) if it holds that Eϑ [T (X)] = g(ϑ) ∀ϑ ∈ Θ.

25
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ii. The function biasg(ϑ) [T (X)] = Eϑ [T (X)]−g(ϑ) is called the bias of the estimator
T (X) with respect to the parametric function g(ϑ).

Interpretation: The property of unbiasedness ensures that an estimator of ϑ takes
values close to the true value of ϑ, but it doesn’t provide any information about
how tightly concentrated all the most probable values of the estimator are around
that value. Therefore, this property doesn’t suffice in order to characterize a "good"
estimator, since it could potentially take values very far away from the true value of
ϑ with high probability. In order to ensure that all the most probable values of the
estimator are tightly concentrated around the true value of ϑ, we must also demand
that the estimator have as small a variance as possible.

Note 3.2. We observe that a statistic T (X) is an unbiased estimator of g(ϑ) if and
only if biasg(ϑ) [T (X)] = 0 ∀ϑ ∈ Θ. For a given parametric function g(ϑ) there may
not exist any unbiased estimator, there may exist a unique unbiased estimator, or
there may exist multiple unbiased estimators.

Definition 3.4. i. The statistic X = 1
n

∑n
i=1Xi is called the sample mean.

ii. Consider the following statistic:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1

(
n∑
i=1

X2
i − nX

2

)
,

which is called the sample variance.

Proposition 3.1. Let X1, . . . , Xn be a random sample from a distribution with
unknown parameter ϑ. Then, it follows that:

i. The sample mean X is an unbiased estimator of g1(ϑ) = Eϑ(X1);

ii. Varϑ
(
X
)
= 1

nVarϑ(X1);

iii. The sample variance S2 is an unbiased estimator of g2(ϑ) = Varϑ(X1).

Proof. i. We calculate that:

Eϑ
(
X
)
=

1

n
Eϑ

(
n∑
i=1

Xi

)
=

1

n

n∑
i=1

Eϑ(Xi) =
1

n

n∑
i=1

Eϑ(X1) = Eϑ(X1) = g1(ϑ).

ii. We calculate that:

Varϑ
(
X
)
=

1

n2
Varϑ

(
n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Varϑ(Xi) =
1

n
Varϑ(X1).
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iii. We calculate that:

Eϑ
(
X

2
)
= Varϑ

(
X
)
+
[
Eϑ
(
X
)]2

=
1

n
Varϑ(X1) + [Eϑ(X1)]

2 ,

Eϑ
(
S2
)
=

1

n− 1

[
n∑
i=1

Eϑ
(
X2
i

)
− nEϑ

(
X

2
)]

=
nVarϑ(X1) + n [Eϑ(X1)]

2 − Varϑ(X1)− n [Eϑ(X1)]
2

n− 1

= Varϑ(X1) = g2(ϑ).

Example 3.1. Let X1, . . . , Xn ∼ Bin(N, p) be a random sample with known N . We
know that E(X1) = Np and Var(X1) = Np(1 − p). According to the previous note,
it follows that E(X) = Np and E

(
S2
)
= Np(1− p). Furthermore, we observe that:

E
(

1

N
X

)
= p, E

(
1

N
S2

)
= p(1− p).

Therefore, T1(X) = 1
NX is an unbiased estimator of p and T2(X) = 1

N S
2 is an

unbiased estimator of the parametric function g(p) = p(1− p).

Example 3.2. Let X ∼ Poisson(λ) be a sample of size 1. We want to show that there
doesn’t exist any unbiased estimator of the parametric function g(λ) = 1

λ . Suppose
that the statistic T (X) is an unbiased estimator of g(λ), i.e. it holds that:

E [T (X)] = g(λ) ⇔
∞∑
x=0

T (x)e−λ
λx

x!
=

1

λ
⇔

λ
∞∑
x=0

T (x)
λx

x!
= eλ ⇔

∞∑
x=0

T (x)

x!
λx+1 =

∞∑
x=0

λx

x!
⇔

∞∑
x=1

T (x− 1)

(x− 1)!
λx =

∞∑
x=0

1

x!
λx.

Since the left-hand side is a power series without a constant term and the right-hand
side is a power series with a constant term equal to 1, it’s impossible for them to be
equal to each other. Thus, there doesn’t exist any unbiased estimator of g(λ) = 1

λ .

3.3 Mean Squared Error

Definition 3.5. The function MSEg(ϑ) [T (X)] = Eϑ[(T (X) − g(ϑ))2] is called the
mean squared error (MSE) of the estimator T (X) with respect to the parametric
function g(ϑ).
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Mean Squared Error Criterion: An estimator T ∗(X) of g(ϑ) is considered "better"
than some other estimator T (X) of g(ϑ) according to the MSE criterion if it holds
that MSEg(ϑ) [T ∗(X)] ⩽ MSEg(ϑ) [T (X)] ∀ϑ ∈ Θ.

Note 3.3. The mean squared error function can be decomposed as follows:

MSEg(ϑ) [T (X)] = Varϑ [T (X)] + bias2g(ϑ) [T (X)] .

If biasg(ϑ) [T (X)] = 0, i.e. T (X) is an unbiased estimator of g(ϑ), then we observe
that MSEg(ϑ) [T (X)] = Varϑ [T (X)]. In other words, if we restrict ourselves to con-
sidering only unbiased estimators of g(ϑ), then the "best" among them according to
the MSE criterion is the one which achieves the smallest possible variance. This un-
biased estimator which achieves the smallest possible variance is called the uniformly
minimum-variance unbiased estimator (UMVUE) g(ϑ), and we will study some of
its properties in section 3.7. However, this doesn’t exclude the possibility of there
existing a biased estimator of g(ϑ) with smaller MSE than the UMVUE of g(ϑ), and
thus smaller MSE than any other unbiased estimator of g(ϑ).

3.4 Sufficiency

Definition 3.6. A statistic T (X) is called sufficient for the parameter ϑ if the condi-
tional distribution of the sample X given that T (X) = t doesn’t depend on the value
of ϑ ∀ϑ ∈ Θ and ∀t ∈ T (S).

Interpretation: A sufficient statistic gathers all the information contained in the
sample for the unknown parameter. In other words, it suffices to compute the value of
a sufficient statistic from a sample of observations, and we will have all the information
we need to estimate the unknown parameter, without further access to the individual
observations.

Theorem 3.1. (Fisher - Neyman Factorization Criterion) Let X be a sample with
joint PMF or PDF f(x;ϑ) for ϑ ∈ Θ and x ∈ S. A statistic T (X) is sufficient for the
parameter ϑ if and only if there exist non-negative functions g, h such that:

f(x;ϑ) = g(T (x), ϑ)h(x).

Proof. Assume that the distribution of the sample is discrete. First, suppose that
f(x;ϑ) = g(T (x), ϑ)h(x). We know that:

P(X = x | T (X) = t) =
P(X = x, T (X) = t)

P(T (X) = t)
.

We discern the following 2 cases:
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1. If T (x) ̸= t, then it follows that:

{X = x} ∩ {T (X) = t} = ∅ ⇒ P(X = x, T (X) = t) = 0 ⇒

P(X = x | T (x) = t) = 0.

2. If T (x) = t, then we calculate that:

P(X = x | T (X) = t) =
P(X = x)

P(T (X) = t)
=

g(t, ϑ)h(x)∑
x: T (x)=t f(x;ϑ)

=
g(t, ϑ)h(x)∑

x: T (x)=t g(t, ϑ)h(x)
=

h(x)∑
x: T (x)=t h(x)

,

which does not depend on the value of ϑ.

In both cases, the conditional probability P(X = x | T (X) = t) does not depend on
the value of ϑ, which implies that T (X) is a sufficient statistic for ϑ.

Conversely, suppose that T (X) is a sufficient statistic for ϑ, which implies that
there exists a function φ(x, t) such that P(X = x | T (X) = t) = φ(x, t). Once again,
we discern the following 2 cases:

1. If T (x) ̸= t, then it follows that φ(x, t) = 0.

2. If T (x) = t, then it follows that φ(x, t) = φ(x, T (x)) = h(x) for some function
h. Then, we calculate that:

f(x;ϑ) = P(X = x | T (X) = t)P(T (X) = t) = φ(x, t)P(T (X) = t)

= h(x)fT (t;ϑ) = h(x)g(T (x), ϑ).

The proof for the general case can be found in Keener, Section 6.4.

Note 3.4. Suppose that the statistic T (X) is sufficient for ϑ. If x, y ∈ S with
T (x) = T (y), then we observe that:

f(x;ϑ)

f(y;ϑ)
=
h(x)

h(x)
,

which doesn’t depend on the value of ϑ. Conversely, if that ratio depends on the
value of ϑ, then the statistic T (X) isn’t sufficient for ϑ.

Corollary 3.1. Suppose that the statistic T (X) is sufficient for ϑ.

i. If it holds that T = ψ (T ∗) for some function ψ, then T ∗(X) is sufficient for ϑ.

ii. If it holds that ϑ = φ(η) for some function φ, then T (X) is sufficient for η too.
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Proof. i. According to the Fisher - Neyman factorization criterion, it follows that:

f(x;ϑ) = g(T (x), ϑ)h(x) = g (ψ (T ∗(x)) , ϑ)h(x) = g∗ (T ∗(x), ϑ)h(x),

where g∗ (t, ϑ) = g (ψ(t), ϑ). Hence, T ∗(X) is a sufficient statistic for ϑ.

ii. According to the Fisher - Neyman factorization criterion, it follows that:

f(x;ϑ) = g(T (x), ϑ)h(x) = g (T (x), φ(η))h(x) = g∗ (T (x), η)h(x),

where g∗ (t, η) = g (t, φ(η)). Hence, T (X) is a sufficient statistic for η.

Example 3.3. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We know that:

f(x;λ) =

n∏
i=1

f(xi;λ) =

n∏
i=1

[
λe−λxi1(0,∞)(xi)

]
= λn exp

{
−λ

n∑
i=1

xi

}
1(0,∞)n(x),

where T (x) =
∑n

i=1 xi, g(t, λ) = λne−λt and h(x) = 1(0,∞)n(x). According to the
Fisher - Neyman factorization theorem, it follows that the statistic T (X) =

∑n
i=1Xi

is sufficient for λ.

Example 3.4. Let X1, . . . , Xn ∼ Laplace(µ, λ) be a random sample with µ ∈ R,
known λ > 0 and PDF f(x;µ) = λ

2 e
−λ|x−µ| for x ∈ R. We calculate that:

f(x;µ) =

(
λ

2

)n
exp

{
−λ

n∑
i=1

|xi − µ|

}
,

where T (x) = (x1, x2, . . . , xn), g(t, µ) = e−λ
∑n

i=1 |ti−µ| and h(x) =
(
λ
2

)n. According
to the Fisher - Neyman factorization theorem, T (X) = (X1, X2, . . . , Xn) is sufficient
for µ. We observe that the sufficient statistic we calculated was the entire sample X,
and we wouldn’t have been able to find any lower-dimensional sufficient statistic than
that. The term

∑n
i=1 |Xi − µ| which appears in the joint PDF of the sample doesn’t

constitute a statistic, since it depends on value of the unknown parameter µ.

Definition 3.7. We denote the order statistics of the sample X by X(1), . . . , X(n).
In particular, it holds that X(1) = min{X1, . . . , Xn} and X(n) = max{X1, . . . , Xn}.

Example 3.5. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. We know that:

f(x;ϑ) =
1

ϑn

n∏
i=1

1[0,ϑ](xi) = ϑ−n1[0,ϑ]

(
x(1)

)
1[0,ϑ]

(
x(n)

)
= ϑ−n1[0,∞)

(
x(1)

)
1(−∞,ϑ]

(
x(n)

)
,

where T (x) = x(n), g(t, ϑ) = ϑ−n1(−∞,ϑ] (t) and h(x) = 1[0,∞)

(
x(1)

)
. According to
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the Fisher - Neyman factorization theorem, T (X) = X(n) is sufficient for ϑ.

Example 3.6. Let X1, . . . , Xn ∼ U(ϑ, ϑ+ 1) be a random sample. We know that:

f(x;ϑ) =

n∏
i=1

1[ϑ,ϑ+1](xi) = 1[ϑ,ϑ+1]

(
x(1)

)
1[ϑ,ϑ+1]

(
x(n)

)
,

where T (x) =
(
x(1), x(n)

)
, g(t1, t2, ϑ) = 1[ϑ,ϑ+1] (t1)1[ϑ,ϑ+1] (t2) and h(x) = 1. Ac-

cording to the Fisher - Neyman factorization theorem, it follows that the statistic
T (X) =

(
X(1), X(n)

)
is sufficient for ϑ.

Example 3.7. Let X1, . . . , Xn be a random sample with f(x;λ, k) = λe−λ(x−k) for
λ > 0, k ∈ R and x ⩾ k. We calculate that:

f(x;λ, k) = λn exp

{
−λ

n∑
i=1

(xi − k)

}
n∏
i=1

1[k,∞)(xi)

= λn exp

{
−λ

n∑
i=1

xi + nλk

}
1[k,∞)

(
x(1)

)
,

where T (x) =
(∑n

i=1 xi, x(1)
)
, g(t1, t2, λ, k) = λne−λt1+nλk1[k,∞) (t2) and h(x) = 1.

According to the Fisher - Neyman factorization theorem, it follows that the statistic
T (X) =

(∑n
i=1Xi, X(1)

)
is sufficient for ϑ = (λ, k).

Proposition 3.2. (Sufficiency in the Exponential Family) Suppose that the distri-
bution of the sample X belongs to the multivariate exponential family with PMF or
PDF f(x;ϑ) = h(x)e⟨Q(ϑ),T (x)⟩−A(ϑ) for ϑ ∈ Θ and x ∈ S. Then, the statistic T (X)

is sufficient for ϑ.

Proof. We observe that the PMF or PDF can be written as f(x;ϑ) = g(T (x), ϑ)h(x),
where g(t, ϑ) = e⟨Q(ϑ),t⟩−A(ϑ). According to the Fisher - Neyman factorization crite-
rion, it immediately follows that the statistic T (X) is sufficient for ϑ.

Example 3.8. Let X1, . . . , Xn ∼ N
(
ϑ, ϑ2

)
be a random sample with ϑ ̸= 0. We

calculate that:

f(x;ϑ) =

(
1√
2πϑ2

)n
exp

{
− 1

2ϑ2

n∑
i=1

(xi − ϑ)2

}

= (2π)−n/2|ϑ|−n exp

{
1

ϑ

n∑
i=1

xi −
1

2ϑ2

n∑
i=1

x2i −
n

2

}

= (2πe)−n/2 exp

{
1

ϑ

n∑
i=1

xi −
1

2ϑ2

n∑
i=1

x2i − n log |ϑ|

}
,

where we let h(x) = (2πe)−n/2, Q(ϑ) =
(
1
ϑ ,−

1
2ϑ2

)
, T (x) =

(∑n
i=1 xi,

∑n
i=1 x

2
i

)
and
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A(ϑ) = n log |ϑ|. According to the proposition about sufficiency in the exponential
family, it follows that the statistic T (X) =

(∑n
i=1Xi,

∑n
i=1X

2
i

)
is sufficient for ϑ. We

observe that the distribution of the sample only has 1 unknown parameter, whereas
the sufficient statistic T (X) is 2-dimensional, so it’s a curved exponential family.

Note 3.5. To sum up, we have 3 methods at our disposal for showing that a statistic is
sufficient for some unknown parameter: the definition of sufficiency (usually unwieldy
in practice), the Fisher - Neyman factorization theorem (more straightforward than
the definition) and the proposition about sufficiency in the exponential family (which
may be easily combined with proving the completeness of the statistic). In table 3.1,
we summarize some notable sufficient statistics for the parameters of some widely
used families of distributions.

Bernoulli(p)

∑n
i=1Xi

Bin(N, p) with known N

Geom(p)

NegBin(N, p) with known N

Poisson(λ)
Exp(λ)

N
(
µ, σ2

)
with known σ2

N
(
µ, σ2

)
with known µ

∑n
i=1(Xi − µ)2

N
(
µ, σ2

) (∑n
i=1Xi,

∑n
i=1X

2
i

)
Gamma(k, λ) (

∑n
i=1 logXi,

∑n
i=1Xi)

Beta(ϑ1, ϑ2) (
∑n

i=1 logXi,
∑n

i=1 log(1−Xi))

U(ϑ1, ϑ2)
(
X(1), X(n)

)
Table 3.1: Notable Sufficient Statistics

3.5 Completeness

Definition 3.8. A statistic T (X) is called complete (for the distribution of the sam-
ple) if Eϑ[φ(T )] = 0 ∀ϑ ∈ Θ implies that φ(T ) = 0 with probability 1 (almost surely)
for any function φ.

Note 3.6. We observe that any unbiased estimator of 0 which is a function of a
complete statistic must be almost identically equal to 0. Therefore, if there exist 2

different functions φ(T ) and ψ(T ) which are both unbiased estimators of g(ϑ), then
the statistic T (X) cannot be complete. Conversely, if T (X) is a complete statistic,
then there exists at most one function φ(T ) which is an unbiased estimator of g(ϑ).

Definition 3.9. A statistic A(X) whose distribution doesn’t depend on any unknown
parameter ϑ is called ancillary.
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Note 3.7. If it holds that A(X) = φ(T ) for some function φ and A(X) is an ancillary
statistic, then T (X) cannot be complete. Conversely, if T (X) is a complete statistic,
then any function of it cannot be ancillary. In other words, any function of a complete
statistic is informative about the unknown parameter ϑ.

Proposition 3.3. If T (X) is a complete statistic and it holds that T = ψ (T ∗) for
some injective function ψ, then T ∗(X) is also a complete statistic.

Proof. Suppose that Eϑ[φ (T ∗)] = 0 ∀ϑ ∈ Θ. Since the statistic T (X) is complete
and the function ψ is invertible, it follows that:

Eϑ[φ(T ∗)] = Eϑ[φ
(
ψ−1(T )

)
] = Eϑ[(φ ◦ ψ−1)(T )] = 0 ⇒

(φ ◦ ψ−1)(T ) = φ
(
ψ−1(T )

)
= φ (T ∗)

a.s.
= 0.

Therefore, T ∗(X) is also a complete statistic.

Note 3.8. In practice, first we find a sufficient statistic for ϑ using one of the methods
presented in the previous paragraph, and then we check if it’s also complete. To check
whether the definition of completeness holds, we need to determine the distribution
of the sufficient statistic T (X), so that we can calculate the expectation Eϑ[φ(T )].
There are 2 notable cases to consider:

i. If the statistic T (X) =
∑n

i=1Xi is sufficient for ϑ, the distribution of T (X) follows
directly from the properties of MGFs.

ii. If X1, . . . , Xn is a random sample with PDF f(x;ϑ), CDF F (x;ϑ) and sufficient
statistic T (X) = X(n) or T (X) = X(1) for ϑ, then the PDF of T (X) can be
calculated as follows:

FX(n)
(x) = P (max {X1, . . . , Xn} ⩽ x) = P (X1 ⩽ x, . . . ,Xn ⩽ x)

= P(X1 ⩽ x) · · ·P(Xn ⩽ x) = [F (x;ϑ)]n ,

fX(n)
(x) = nf(x;ϑ) [F (x;ϑ)]n−1 ,

FX(1)
(x) = 1− P (min {X1, . . . , Xn} > x) = 1− P(X1 > x, . . . ,Xn > x)

= 1− P(X1 > x) · · ·P(Xn > x) = 1− [1− F (x;ϑ)]n ,

fX(1)
(x) = nf(x;ϑ) [1− F (x;ϑ)]n−1 .

Note 3.9. To compute the expectation Eϑ[φ(T )], we distinguish the following cases:

i. The distribution of T is discrete: The expectation takes the form of a series (or
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a sum). Specifically, if it takes the following form:

Eϑ[φ(T )] =
∞∑
t=0

φ(t)ψ(t) [u(ϑ)]t = 0, ∀ϑ ∈ Θ,

then we infer that φ(t)ψ(t) = 0 ∀t ∈ T (S). Furthermore, if ψ(t) ̸= 0 ∀t ∈ T (S),
then we conclude that φ(t) = 0 ∀t ∈ T (S).

ii. The distribution of T is continuous and its support is (0,∞): Suppose that the
integral takes the following form:

Eϑ[φ(T )] =
∫ ∞

0
φ(t)ψ(t)w(ϑ)e−u(ϑ)tdt = w(ϑ)

∫ ∞

0
φ(t)ψ(t)e−u(ϑ)tdt = 0,

∀ϑ ∈ Θ. If w(ϑ) ̸= 0 ∀ϑ ∈ Θ, then if follows that:∫ ∞

0
φ(t)ψ(t)e−u(ϑ)tdt = 0, ∀ϑ ∈ Θ.

The last integral is the Laplace transform of the function φ(t)ψ(t) evaluated at
u(ϑ). We know that the Laplace transform is injective on classes of almost surely
equal functions. Additionally, the Laplace transform of the zero function is equal
to 0, so we infer that φ(t)ψ(t) = 0 almost surely. Furthermore, if ψ(t) ̸= 0, then
we conclude that φ(t) = 0 almost surely.

iii. The distribution of T is continuous and its support is the real line: Similarly,
suppose that the integral takes the following form:

Eϑ[φ(T )] =
∫ ∞

−∞
φ(t)ψ(t)w(ϑ)e−u(ϑ)tdt = w(ϑ)

∫ ∞

−∞
φ(t)ψ(t)e−u(ϑ)tdt = 0,

∀ϑ ∈ Θ. If w(ϑ) ̸= 0 ∀ϑ ∈ Θ, then it follows that:∫ ∞

−∞
φ(t)ψ(t)e−u(ϑ)tdt = 0, ∀ϑ ∈ Θ.

The last integral is the two-sided Laplace transform of the function φ(t)ψ(t)

evaluated at u(ϑ), which is also injective on classes of almost surely equal func-
tions. The two-sided Laplace transform of the zero function is also equal to 0. If
φ(t) ̸= 0, then we arrive at the desired result in the same manner as before.

iv. The distribution of T is continuous and its support depends on ϑ: The expectation
takes the form of a Riemann integral with at least one integration limit which is
a function of ϑ:

Eϑ[φ(T )] =
∫ u(ϑ)

a
φ(t)ψ(t)w(ϑ)dt = w(ϑ)

∫ u(ϑ)

a
φ(t)ψ(t)dt = 0, ∀ϑ ∈ Θ.
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If w(ϑ) ̸= 0 ∀ϑ ∈ Θ, then we infer that:

∫ u(ϑ)

a
φ(t)ψ(t)dt = 0, ∀ϑ ∈ Θ.

According to the fundamental theorem of calculus, it follows that:

u′(ϑ)φ (u(ϑ))ψ (u(ϑ)) = 0, ∀ϑ ∈ Θ.

If u′(ϑ)ψ (u(ϑ)) ̸= 0 ∀ϑ ∈ Θ, then we conclude that φ (u(ϑ)) = 0 ∀ϑ ∈ Θ, i.e.
φ(t) = 0 ∀t ∈ u(Θ). If T (S) ⊆ u(Θ), then the desired result follows.

Example 3.9. Let X1, . . . , Xn ∼ Poisson(λ) be a random sample. We know that
T (X) =

∑n
i=1Xi ∼ Poisson(nλ) is sufficient for λ. Suppose that Eλ[φ(T )] = 0 ∀λ > 0.

Then, we calculate that:

Eλ[φ(T )] =
∞∑
t=0

φ(t)Pλ(T = t) =

∞∑
t=0

φ(t)e−nλt
(nλ)t

t!
=

∞∑
t=0

φ(t)

t!

(
nλe−nλ

)t
= 0,

∀λ > 0. It follows that φ(t)
t! = 0 for t = 0, 1, . . . , which implies that φ(t) = 0 for

t = 0, 1, . . . . Therefore, the statistic T (X) =
∑n

i=1Xi is complete.

Example 3.10. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We know that
the statistic T (X) =

∑n
i=1Xi ∼ Gamma(n, λ) is sufficient for λ. Suppose that

Eλ[φ(T )] = 0 ∀λ > 0. Then, we calculate that:

Eλ[φ(T )] =
∫ ∞

0
fT (t)φ(t)dt =

λn

(n− 1)!

∫ ∞

0
tn−1e−λtφ(t)dt = 0, ∀λ > 0 ⇒

∫ ∞

0
φ(t)tn−1e−λtdt = 0, ∀λ > 0.

The last integral is the Laplace transform of the function φ(t)tn−1 evaluated at λ.
According to note 3.9, we infer that φ(t)tn−1 = 0 ∀t > 0, which implies that φ(t) = 0

∀t > 0. Therefore, the statistic T (X) =
∑n

i=1Xi is complete.

Example 3.11. Let X1, . . . , Xn ∼ U
(
ϑ2, 1

)
be a random sample with ϑ ∈ (0, 1). We

can easily show that the statistic T (X) = X(1) is sufficient for ϑ. According to note
3.8, we calculate that:

fX(1)
(t) =

n

(1− ϑ2)n
(1− t)n−1, t ∈

(
ϑ2, 1

)
.

Suppose that Eϑ[φ(T )] = 0 ∀ϑ ∈ (0, 1). Then, we calculate that:

Eϑ[φ(T )] =
∫ 1

ϑ2
fX(1)

(t)φ(t)dt =
n

(1− ϑ2)n

∫ 1

ϑ2
(1− t)n−1φ(t)dt = 0, ∀ϑ ∈ (0, 1) ⇒
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∫ 1

ϑ2
(1− t)n−1φ(t)dt = 0, ∀ϑ ∈ (0, 1).

According to the fundamental theorem of calculus, we infer that:

−2ϑ
(
1− ϑ2

)n−1
φ
(
ϑ2
)
= 0, ∀ϑ ∈ (0, 1) ⇒ φ(t) = 0, ∀t ∈ (0, 1) ⊇

(
ϑ2, 1

)
.

Therefore, the statistic T (X) = X(1) is complete.

Example 3.12. Let X1, . . . , Xn ∼ U(−ϑ, ϑ) be a random sample with ϑ > 0. We
can easily show that the statistic T (X) =

(
X(1), X(n)

)
is sufficient for ϑ. According

to note 3.8, we calculate that:

fX(n)
(t) =

n

(2ϑ)n
(t+ ϑ)n−1, fX(1)

(t) =
n

(2ϑ)n
(ϑ− t)n−1,

Eϑ
[
X(n)

]
=

∫ ϑ

−ϑ
n(t+ ϑ)n−1 t

(2ϑ)n
dt =

[
(t+ ϑ)n

t

(2ϑ)n

]ϑ
−ϑ

− 1

(2ϑ)n

∫ ϑ

−ϑ
(t+ ϑ)ndt

= ϑ− 1

(2ϑ)n

[
1

(n+ 1)
(t+ ϑ)n+1

]ϑ
−ϑ

= ϑ− 2ϑ

n+ 1
,

Eϑ
[
X(1)

]
=

∫ ϑ

−ϑ
n(ϑ− t)n−1 t

(2ϑ)n
dt = −

[
(ϑ− t)n

t

(2ϑ)n

]ϑ
−ϑ

+
1

(2ϑ)n

∫ ϑ

−ϑ
(ϑ− t)ndt

= −ϑ− 1

(2ϑ)n

[
1

(n+ 1)
(ϑ− t)n+1

]ϑ
−ϑ

= −ϑ+
2ϑ

n+ 1
.

We observe that Eϑ
[
X(1) +X(n)

]
= 0 ∀ϑ > 0, i.e. the statistic X(1) + X(n) is an

unbiased estimator of 0 which is a function of T (X). According to note 3.6, the
statistic T (X) =

(
X(1), X(n)

)
is not complete. Alternatively, we let Yi = |Xi| for

i = 1, 2, . . . , n and calculate that:

FY1(y) = P (|X1| ⩽ y) = P(−y ⩽ X1 ⩽ y) = P(X1 ⩽ y)− P(X1 < −y)

= F (y;ϑ)− F (−y;ϑ) = y + ϑ

2ϑ
− −y + ϑ

2ϑ
=
y

ϑ
, y ∈ (0, ϑ),

i.e. Yi = |Xi| ∼ U(0, ϑ) for i = 1, 2, . . . , n. According to example 3.5 (page 30), the
statistic T ∗(X) = max{|X1|, . . . , |Xn|} is also sufficient for ϑ. In the same manner as
in the previous example, we can show that the statistic T ∗(X) is complete.

Theorem 3.2. (Complete Sufficiency in the Exponential Family) Suppose that the
distribution of the sample X belongs to the multivariate full exponential family with
f(x;ϑ) = h(x)e⟨Q(ϑ),T (x)⟩−A(ϑ) for ϑ ∈ Θ ⊆ Rs and x ∈ S. Additionally, if the set
Q(Θ) = {Q(ϑ) : ϑ ∈ Θ} ⊆ Rs contains a non-empty, open subset of Rs, then the
statistic T (X) is sufficient for ϑ and complete.

Proof. According to the proposition on sufficiency in the exponential family, we al-
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ready know that T (X) is a sufficient statistic for ϑ. Without loss of generality, assume
that the distribution of the sample is continuous. According to the change of variables
formula, the PDF of T (X) is given by fT (t) = r(t)e⟨Q(ϑ),t⟩−nA(ϑ) for some function r.
Suppose that Eϑ[φ(T )] = 0 ∀ϑ ∈ Θ. Then, we calculate that:

Eϑ [φ(T )] =
∫
Rs

φ(t)r(t)e⟨Q(ϑ),t⟩−nA(ϑ)dt = 0 ⇒
∫
Rs

φ(t)r(t)e−⟨−Q(ϑ),t⟩dt = 0.

The last integral is the s-dimensional two-sided Laplace transform of the function
φ(t)r(t) evaluated at −Q(ϑ), which is injective on classes of almost surely equal
functions. The multidimensional two-sided Laplace transform of the zero function
is equal to 0. Since r(t) ̸= 0 by the definition of the PDF of T (X), it follows that
φ(t) = 0 ∀t ∈ Rs. Therefore, the statistic T (X) is complete.

Example 3.13. Let X1, . . . , Xn ∼ N (ϑ1, ϑ2) be a random sample. According to
example 2.4 (page 21), the distribution of the random variables X1, . . . , Xn belongs
to the univariate exponential family. According to proposition 2.3 (page 22), the joint
distribution of the sample X belongs to the multivariate exponential family with the
following PDF:

f(x;ϑ) = (2π)−n/2 exp

{
ϑ1
ϑ2

n∑
i=1

xi −
1

2ϑ2

n∑
i=1

x2i −
nϑ21
2ϑ2

− n

2
log ϑ2

}
,

Q(ϑ) =

(
ϑ1
ϑ2
,− 1

2ϑ2

)
, T (x) =

(
n∑
i=1

xi,

n∑
i=1

x2i

)
.

The dimension of the function T (x) is equal to the dimension of the parameter (ϑ1, ϑ2),
and the set Q(Θ) =

{(
ϑ1
ϑ2
,− 1

2ϑ2

)
: (ϑ1, ϑ2) ∈ R× (0,∞)

}
= R× (−∞, 0) contains a

non-empty, open subset of R2. According to the complete sufficiency theorem in the
exponential family, the statistic T (X) =

(∑n
i=1Xi,

∑n
i=1X

2
i

)
is sufficient for (ϑ1, ϑ2)

and complete.

Example 3.14. Let X1, . . . , Xn ∼ N
(
ϑ, ϑ2

)
be a random sample with ϑ ̸= 0. Accord-

ing to example 3.8 (page 31), the statistic T (X) =
(∑n

i=1Xi,
∑n

i=1X
2
i

)
is sufficient for

ϑ. Furthermore, we observe that T (X) =
(
nX, (n− 1)S2 + nX

2
)
= ψ

(
X,S2

)
. Ac-

cording to corollary 3.1 (page 29), we infer that the statistic T ∗(X) =
(
X,S2

)
is also

sufficient for ϑ. According to proposition 3.1 (page 26), we know that Eϑ
(
S2
)
= ϑ2.

Additionally, we calculate that:

Eϑ
(
X

2
)
=

1

n
ϑ2 + ϑ2 =

n+ 1

n
ϑ2 ⇒ Eϑ

(
S2 − n

n+ 1
X

2
)

= 0, ∀ϑ ̸= 0,

i.e. there exist 2 unbiased estimators of the parametric function g(ϑ) = ϑ2 which are
both a function of T ∗(X). According to note 3.6, the statistic T ∗(X) =

(
X,S2

)
is not
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complete. We observe that the complete sufficiency theorem in the exponential family
doesn’t apply in this particular case, since this is a curved exponential family.

Note 3.10. To sum up, we have 2 methods at our disposal for checking whether a
statistic is complete: the definition (which requires knowledge of the distribution of
the statistic) and the complete sufficiency theorem in the exponential family (easy to
check whether its conditions hold). In table 3.2, we summarize the distributions of
some notable complete sufficient statistics.

Bernoulli(p)

∑n
i=1Xi

Bin(n, p)
Bin(N, p) with known N Bin(nN, p)

Geom(p) NegBin(n, p)
NegBin(N, p) with known N NegBin(nN, p)

Poisson(λ) Poisson(nλ)
Gamma(k, λ) with known k Gamma(nk, λ)
N
(
µ, σ2

)
with known σ2 N (nµ, nσ2)

Exp(ϑ)
Gamma(n, ϑ)Beta(ϑ, 1) −

∑n
i=1 logXi

Beta(1, ϑ) −
∑n

i=1 log(1−Xi)

Table 3.2: Distributions of Notable Complete Sufficient Statistics

Note 3.11. (χ2 distribution with ν degrees of freedom)

i. If X ∼ χ2
ν ≡ Gamma

(
ν
2 ,

1
2

)
, then E(X) = ν and Var(X) = 2ν.

ii. If X ∼ Gamma(k, ϑ), then 2ϑX ∼ Gamma
(
k, 12

)
≡ χ2

2k.

iii. If X ∼ N (µ, σ2), then X−µ
σ ∼ N (0, 1) and

(
X−µ
σ

)2
∼ χ2

1.

iv. If X1, . . . , Xn ∼ N (µ, σ2) are iid, then
∑n

i=1

(
Xi−µ
σ

)2
∼ χ2

n.

v. If X1, . . . , Xn ∼ N (µ, σ2) are iid, then n−1
σ2 S

2 =
∑n

i=1

(
Xi−X
σ

)2
∼ χ2

n−1.

Note 3.12. If X1, . . . , Xn ∼ N (µ, σ2) are iid random variables, then it follows that:

E
(
n− 1

σ2
S2

)
= n− 1 ⇒ E

(
S2
)
= σ2,

Var

(
n− 1

σ2
S2

)
= 2(n− 1) ⇒ Var

(
S2
)
=

2

n− 1
σ4.

Theorem 3.3. (Basu) Suppose that the statistic T (X) is sufficient for ϑ and complete.
If A(X) is an ancillary statistic, then T (X) and A(X) are independent.
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Proof. According to the law of iterated expectations, it follows that:

E [h(A(X))] = Eϑ [E (h(A(X)) | T (X))] .

Note that E [h(A(X))] does not depend on the value of ϑ because the statistic A(X)

is ancillary, while E [h(A(X)) | T (X)] does not depend on the value of ϑ because we
are conditioning on the sufficient statistic T (X) for ϑ. Now, consider the following
function:

g(t) = E [h(A(X)) | T (X) = t]− E [h(A(X))] .

Based on our previous argument, we know that Eϑ [g(T )] = 0 ∀ϑ ∈ Θ. Since the
statistic T (X) is complete, it follows that:

g(T )
a.s.
= 0 ⇒ E [h(A(X)) | T (X)]

a.s.
= E [h(A(X))] .

Since the function h was arbitrary, we deduce that T (X) and A(X) are mutually
independent.

Note 3.13. A well-known application of Basu’s theorem lies in proving the indepen-
dence of the statistics X and S2 if the random variables X1, . . . , Xn ∼ N

(
µ, σ2

)
are

iid. In fact, the independence of the sample mean and the sample variance charac-
terizes the normal distribution - no other distribution has this property. We fix σ2.
Then, we know that the statistic X is sufficient for µ and complete. We also know
that n−1

σ2 S
2 ∼ χ2

n−1, i.e. S2 is an ancillary statistic. According to Basu’s theorem, it
follows that the statistics X and S2 are independent.

Definition 3.10. i. The statistic R(X) = X(n) −X(1) is called the sample range.

ii. The statistic M(X) =
X(1)+X(n)

2 is called the sample midpoint.

Example 3.15. Let X1, . . . , Xn ∼ N
(
µ, σ2

)
be a random sample. We want to show

that the statistics
(
X,S2

)
and A(X) = R(X)

S(X) are independent. We know that the
statistic T (X) =

(
X,S2

)
is sufficient for ϑ =

(
µ, σ2

)
and complete. Furthermore,

we let Zi = Xi−µ
σ ∼ N (0, 1) for i = 1, 2, . . . , n, so it follows that X = σZ + µ and

X(i) = σZ(i) + µ for i = 1, 2, . . . , n. We calculate that:

R(X) = σZ(n) + µ−
[
σZ(1) + µ

]
= σ

[
Z(n) − Z(1)

]
,

S2(X) =
1

n− 1

n∑
i=1

[
σZi + µ−

(
σZ + µ

)]2
=

σ2

n− 1

n∑
i=1

(
Zi − Z

)2
,

A(X) =
Z(n) − Z(1)√

1
n−1

∑n
i=1

(
Zi − Z

)2 ,
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i.e. the statistic A(X) is ancillary. According to Basu’s theorem, it follows that the
statistics

(
X,S2

)
and A(X) are independent.

Example 3.16. Let X1, . . . , Xn ∼ U(ϑ, ϑ+ 1) be a random sample with ϑ ∈ R. We
want to show that the statistic T (X) = (R,M) is sufficient for ϑ but not complete.
According to example 3.6 (page 31), the statistic T ∗(X) =

(
X(1), X(n)

)
is sufficient

for ϑ. Additionally, we observe that T ∗(X) =
(
2M+R

2 , 2M−R
2

)
= ψ (R,M). According

to corollary 3.1 (page 29), we infer that the statistic T (X) = (R,M) is also sufficient
for ϑ. Furthermore, we let Ui = Xi − ϑ ∼ U(0, 1) for i = 1, 2, . . . , n, so it follows that
X(i) = U(i) + ϑ for i = 1, 2, . . . , n. We calculate that:

R(X) = X(n) −X(1) = U(n) + ϑ−
[
U(1) + ϑ

]
= U(n) − U(1),

i.e. the statistic R(X) is ancillary. According to Basu’s theorem, it follows that the
statistic T (X) = (R,M) is not complete, since it’s not independent of the ancillary
statistic R(X).

Note 3.14. While the statistic R(X) is ancillary, it’s sufficient for ϑ in conjunction
with the statistic M(X). In other words, while it doesn’t by itself contain any in-
formation for the value of ϑ, in conjunction with some other statistic it provides
information about the precision with which we can estimate ϑ. For example, if we
observe the value m = 2 for the statistic M(X), then it follows that ϑ must lie on
[1, 2]. If we also observe the value r = 1 for the statistic R(X), then we calculate
that x(1) = 1.5 and x(n) = 2.5, which implies that ϑ must be equal to 1.5 ∈ [1, 2].
If we instead observe r = 0.5, then x(1) = 1.75 and x(n) = 2.25, so ϑ must lie on
[1.25, 1.75] ⊂ [1, 2]. However, if we only observe some value r, we obviously cannot
draw any conclusion about the value of ϑ.

3.6* Minimal Sufficiency

Definition 3.11. A statistic T (X) is called minimal sufficient for the unknown
parameter ϑ if it’s sufficient for ϑ and for every other sufficient statistic T ∗(X) of ϑ
there exists a function ψ such that T (X) = ψ(T ∗).

Interpretation: A minimal sufficient statistic for ϑ is a function of every other
sufficient statistic of ϑ, so it concentrates all the information that a sample holds
about ϑ as efficiently as possible. For example, the sample itself is always a sufficient
statistic for any unknown parameter ϑ, but it’s usually possible to summarize the
information that the sample contains about ϑ much more efficiently than that.

Proposition 3.4. If the statistic T (X) is minimal sufficient for ϑ and T (X) = ψ (T ∗)

for some injective function ψ, then T ∗(X) is also minimal sufficient for ϑ.



3.6. MINIMAL SUFFICIENCY 41

Proof. First, note that the statistic T ∗(X) is sufficient for ϑ according to corollary
3.1 (page 29). Suppose that V (X) is another sufficient statistic for ϑ. According to
the definition of minimal sufficiency, there exists a function φ such that T = φ (V ).
Since the function ψ is invertible, we get that T ∗ =

(
ψ−1 ◦ φ

)
(V ). Since the sufficient

statistic T ∗(X) for ϑ is a function of any other arbitrary sufficient statistic V (X) for
ϑ, we conclude that it is a minimal sufficient statistic for ϑ.

Theorem 3.4. If a minimal sufficient statistic for ϑ exists, then any statistic which
is sufficient for ϑ and complete is minimal sufficient for ϑ.

Proof. Consider a statistic T (X) which is sufficient for ϑ and complete, a statistic
M(X) which is minimal sufficient for ϑ and let g (T (X)) = T (X)−E [T (X) |M(X)].
Note that E [T (X) |M(X)] does not depend on the value of ϑ since we are condition-
ing on the sufficient statistic M(X) for ϑ. Suppose that Eϑ [g(T )] = 0 ∀ϑ ∈ Θ. Since
the statistic T (X) is complete, it follows that:

g(T )
a.s.
= 0 ⇒ T (X) = E [T (X) |M(X)]︸ ︷︷ ︸

ψ(M)

.

Since M(X) is a minimal sufficient statistic for ϑ, we conclude that T (X) is also
minimal sufficient statistic for ϑ according to the previous proposition.

Note 3.15. The converse is generally not true, i.e. a minimal sufficient statistic for
ϑ isn’t necessarily complete.

Theorem 3.5. Let X be a sample with joint PMF or PDF f(x;ϑ). For a given
x ∈ Rn, we let Θx = {ϑ ∈ Θ : f(x;ϑ)} ⊆ Θ be the subset of the parameter space
under which it’s possible to observe the sample x. Suppose that there exists some
statistic T (X) such that ∀x, y ∈ S the following equivalency holds:

T (x) = T (y) ⇔ Θx = Θy and f(x;ϑ)

f(y;ϑ)
= h(x, y),

where h is a non-negative function which doesn’t depend on the value of ϑ ∈ Θx.
Then, the statistic T (X) is minimal sufficient for ϑ.

Proof. Let At = {x ∈ Rn : T (x) = t} and xt ∈ At. For any sample point x ∈ Rn, we
notice that T

(
xT (x)

)
= T (x). By assumption, it follows that Θx = ΘxT (x)

and the
ratio f(x;ϑ)

f(xT (x);ϑ)
= h(x) does not depend on the value of ϑ ∈ Θx. Then, we observe

that:
f(x;ϑ) =

f(x;ϑ)

f
(
xT (x);ϑ

) f (xT (x);ϑ)︸ ︷︷ ︸
g(T (x),ϑ)

= h(x)g (T (x), ϑ) .
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According to the Fisher - Neyman factorization criterion, the statistic T (X) is suf-
ficient for ϑ. Now, suppose that T ∗(X) is another sufficient statistic for ϑ, which
implies that f(x;ϑ) = g∗ (T ∗(x), ϑ)h∗(x) for some functions g∗, h∗. If T ∗(x) = T ∗(y),
then it follows that:

f(x;ϑ)

f(y;ϑ)
=
g∗ (T ∗(x), ϑ)h∗(x)

g∗ (T ∗(y), ϑ)h∗(y)
=
h∗(x)

h∗(y)
,

which does not depend on the value of ϑ. Furthermore, we notice that:

Θx = {ϑ ∈ Θ : f(x;ϑ) > 0} = {ϑ ∈ Θ : g∗ (T ∗(x), ϑ) > 0}

= {ϑ ∈ Θ : g∗ (T ∗(y), ϑ) > 0} = {ϑ ∈ Θ : f(y;ϑ) > 0} = Θy.

By assumption, it follows that T (x) = T (y). Since T ∗(x) = T ∗(y) implies that
T (x) = T (y) for any arbitrary sample points x, y ∈ Rn, we deduce that T (X) is a
function of T ∗(X). Since the sufficient statistic T (X) for ϑ is a function of any other
arbitrary sufficient statistic T ∗(X) for ϑ, we conclude that it is a minimal sufficient
statistic for ϑ.

Example 3.17. Let X1, . . . , Xn ∼ N (ϑ, ϑ) be a random sample with ϑ > 0. We
observe that Θx = (0,∞) doesn’t depend on the observed sample x ∈ Rn. We
calculate that:

f(x;ϑ) =

(
1√
2πϑ

)n
exp

{
− 1

2ϑ

n∑
i=1

(xi − ϑ)2

}

= (2π)−n/2ϑ−n/2 exp

{
n∑
i=1

xi −
1

2ϑ

n∑
i=1

x2i −
nϑ

2

}

= (2π)−n/2ϑ−n/2e−nϑ/2enx exp

{
− 1

2ϑ

n∑
i=1

x2i

}
,

Let T (X) =
∑n

i=1X
2
i . For x, y ∈ Rn, we observe that:

T (x) = T (y) ⇔ f(x;ϑ)

f(y;ϑ)
= en(x−y),

which is constant with respect to ϑ. Therefore, T (X) =
∑n

i=1X
2
i is a minimal

sufficient statistic for ϑ.

Example 3.18. Let X1, . . . , Xn ∼ N
(
ϑ, ϑ2

)
be a random sample with ϑ > 0. We

observe that Θx = (0,∞) doesn’t depend on the observed sample x ∈ Rn. According
to example 3.8 (page 31), we know that:

f(x;ϑ) = (2πe)−n/2ϑ−n exp

{
1

ϑ

n∑
i=1

xi −
1

2ϑ2

n∑
i=1

x2i

}
,
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Let T (X) =
(∑n

i=1Xi,
∑n

i=1X
2
i

)
. For x, y ∈ Rn, we observe that:

T (x) = T (y) ⇔ f(x;ϑ)

f(y;ϑ)
= 1,

which is constant with respect to ϑ. Therefore, T (X) =
(∑n

i=1Xi,
∑n

i=1X
2
i

)
is a

minimal sufficient statistic for ϑ.

Example 3.19. Let X1, . . . , Xn ∼ Laplace(µ, λ) be a random sample with µ ∈ R,
known λ > 0 and f(x;µ) = λ

2 e
−λ|x−µ| for x ∈ R. We observe that Θx = R doesn’t

depend on the observed sample x ∈ Rn. We calculate that:

f(x;µ) =

(
λ

2

)n
exp

{
−λ

n∑
i=1

|xi − µ|

}
=

(
λ

2

)n
exp

{
−λ

n∑
i=1

∣∣x(i) − µ
∣∣} .

Let T (X) =
(
X(1), X(2), . . . , X(n)

)
. For x, y ∈ Rn, we observe that:

T (x) = T (y) ⇔ f(x;µ)

f(y;µ)
= 1,

which is constant with respect to µ. Therefore, T (X) =
(
X(1), X(2), . . . , X(n)

)
is a

minimal sufficient statistic for µ.

Example 3.20. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with k > 0,
known λ > 0 and f(x; k) = λkλ

xλ+1 for x ⩾ k. We observe that Θx =
(
0, x(1)

]
depends

on the observed sample x ∈ (0,∞)n. We calculate that:

f(x; k) = λnknλ
n∏
i=1

x−λ−1
i 1[k,∞)

(
x(1)

)
.

Let T (X) = X(1). For x, y ∈ (0,∞)n, we observe that:

T (x) = T (y) ⇔ Θx = Θy and f(x; k)

f(y; k)
= 1,

which is constant with respect to k ∈
(
0, x(1)

]
. Therefore, T (X) = X(1) is a minimal

sufficient statistic for k.

Example 3.21. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with k > 0,
λ > 0 and f(x; k, λ) = λkλ

xλ+1 for x ⩾ k. We observe that Θx =
(
0, x(1)

]
× (0,∞)

depends on the observed sample x ∈ (0,∞)n. We calculate that:

f(x;ϑ) = λnknλ exp

{
−(λ+ 1)

n∑
i=1

log xi

}
1[k,∞)

(
x(1)

)
.
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Let T (X) =
(∑n

i=1 logXi, X(1)

)
. For x, y ∈ (0,∞)n, we observe that:

T (x) = T (y) ⇔ Θx = Θy and f(x;ϑ)

f(y;ϑ)
= 1,

which is constant with respect to (k, λ) ∈
(
0, x(1)

]
× (0,∞). Therefore, the statistic

T (X) =
(∑n

i=1 logXi, X(1)

)
is minimal sufficient for ϑ = (k, λ).

Example 3.22. Let X1, . . . , Xn ∼ U(ϑ, ϑ+ 1) be a random sample with ϑ ∈ R. We
observe that Θx =

[
x(n) − 1, x(1)

]
depends on the observed sample x ∈ Rn. According

to example 3.6 (page 31), we know that:

f(x;ϑ) = 1[ϑ,ϑ+1]

(
x(1)

)
1[ϑ,ϑ+1]

(
x(n)

)
.

Let T (X) =
(
X(1), X(n)

)
. For x, y ∈ Rn, we observe that:

T (x) = T (y) ⇔ Θx = Θy and f(x;ϑ)

f(y;ϑ)
= 1,

which is constant with respect to ϑ ∈
[
x(n) − 1, x(1)

]
. Therefore, T (X) =

(
X(1), X(n)

)
is a minimal sufficient statistic for ϑ.

3.7 Uniformly Minimum-Variance Unbiased Estimators

Definition 3.12. A statistic δ(X) is called a uniformly minimum-variance unbiased
estimator (UMVUE) of the parametric function g(ϑ) if it’s an unbiased estimator of
g(ϑ) with finite variance and for every other unbiased estimator V (X) of g(ϑ) it holds
that Varϑ [δ(X)] ⩽ Varϑ [V (X)] ∀ϑ ∈ Θ.

Theorem 3.6. Let U0 =
{
U(X) : Eϑ [U(X)] = 0 and Eϑ

[
U2(X)

]
<∞ ∀ϑ ∈ Θ

}
be

the class of unbiased estimators of 0 with finite variance and δ(X) be an unbiased
estimator of g(ϑ) with finite variance. Then, the statistic δ(X) is a UMVUE of g(ϑ)
if and only if Covϑ [δ(X), U(X)] = 0 ∀ϑ ∈ Θ and ∀U(X) ∈ U0.

Proof. First, suppose that δ(X) is a UMVUE of g(ϑ). Let U(X) ∈ U0 and consider
the estimator δ∗(X) = δ(X) + λU(X) of g(ϑ) for λ ∈ R. Then, we observe that:

Eϑ [δ
∗(X)] = Eϑ [δ(X)] + λEϑ [U(X)] = g(ϑ),

so δ∗(X) is an unbiased estimator of g(ϑ). Since δ(X) is a UMVUE of g(ϑ), it follows
that:

Varϑ [δ(X)] ⩽ Varϑ [δ∗(X)] = Varϑ [δ(X)] + λ2Varϑ [U(X)] + 2λCovϑ [δ(X), U(X)] ,
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which implies that λ2Varϑ [U(X)] + 2λCovϑ [δ(X), U(X)] ⩾ 0 ∀λ ∈ R. For this
condition to be satisfied, the determinant of this quadratic equation with respect to
λ must be non-positive, i.e. [2Covϑ (δ(X), U(X))]2 ⩽ 0 ∀ϑ ∈ Θ, which implies that
Covϑ[δ(X), U(X)] = 0 ∀ϑ ∈ Θ.

Conversely, suppose that Covϑ [δ(X), U(X)] = 0 ∀ϑ ∈ Θ and ∀U(X) ∈ U0. Con-
sider an unbiased estimator δ∗(X) of g(ϑ). Then, we note that Eϑ [δ(X)− δ∗(X)] = 0,
which implies that δ(X) − δ∗(X) ∈ U0. By assumption and use of the covariance in-
equality, we deduce that:

Covϑ [δ(X), δ(X)− δ∗(X)] = 0 ⇒ Varϑ [δ(X)] = Covϑ [δ(X), δ∗(X)] ⇒

[Varϑ (δ(X))]2 = [Covϑ (δ(X), δ∗(X))]2 ⩽ Varϑ [δ(X)]Varϑ [δ∗(X)] ⇒

Varϑ [δ(X)] ⩽ Varϑ [δ∗(X)] .

Since δ∗ was an arbitrary unbiased estimator of g(ϑ), we conclude that the statistic
δ(X) is a UMVUE of g(ϑ).

Corollary 3.2. Let U(X) ∈ U0 and V (X) be an unbiased estimator of the parametric
function g(ϑ) with finite variance. If the constant c = Covϑ[V (X),U(X)]

Varϑ[U(X)] ̸= 0 doesn’t
depend on the value of ϑ, then V ∗(X) = V (X)−cU(X) is also an unbiased estimator
of g(ϑ) and it holds that Varϑ [V ∗(X)] ⩽ Varϑ [V (X)] ∀ϑ ∈ Θ.

Proof. First, we observe that:

Eϑ[V ∗(X)] = Eϑ[V (X)]− cEϑ[U(X)] = g(ϑ),

which implies that V ∗(X) is an unbiased estimator of g(ϑ). Then, we calculate that:

Varϑ [V ∗(X)] = Varϑ [V (X)− cU(X)]

= Varϑ [V (X)] + c2Varϑ [U(X)]− 2cCovϑ [V (X), U(X)]

= Varϑ [V (X)] +
Cov2

ϑ [V (X), U(X)]

Varϑ [U(X)]
− 2

Cov2
ϑ [V (X), U(X)]

Varϑ [U(X)]

= Varϑ [V (X)]− Cov2
ϑ [V (X), U(X)]

Varϑ [U(X)]
⩽ Varϑ [V (X)] .

Note 3.16. This result is often used in Monte Carlo simulation as a variance reduc-
tion technique and referred to as the control variates method.

Corollary 3.3. If there exists a UMVUE for a parametric function g(ϑ), then it is
unique.
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Proof. Suppose δ1(X) and δ2(X) are 2 different UMVUEs of g(ϑ). Then, it follows
that δ1(X)− δ2(X) ∈ U0. According to the previous theorem, we infer that:

Covϑ [δ1(X), δ1(X)− δ2(X)] = Covϑ [δ2(X), δ1(X)− δ2(X)] = 0 ⇒

Varϑ [δ1(X)] = Varϑ [δ2(X)] = Covϑ [δ1(X), δ2(X)] ⇒

Corrϑ [δ1(X), δ2(X)] =
Covϑ [δ1(X), δ2(X)]√

Varϑ [δ1(X)]Varϑ [δ2(X)]
= 1.

Hence, there exist constants c0 ∈ R and c1 > 0 such that δ1(X)
a.s.
= c0 + c1δ2(X).

Since it holds that Varϑ [δ1(X)] = Varϑ [δ2(X)], we infer that c21 = 1, which implies
that c1 = 1. Furthermore, since it holds that Eϑ [δ1(X)] = Eϑ [δ2(X)], it follows that
c0 = 0. Therefore, we conclude that δ1(X)

a.s.
= δ2(X). Since any 2 arbitrary UMVUEs

of g(ϑ) must be almost surely equal to each other, we conclude that the UMVUE of
g(ϑ) is unique, provided that it exists.

Corollary 3.4. If the statistics δ1(X), . . . , δd(X) are the UMVUEs of the parametric
functions g1(ϑ), . . . , gd(ϑ) respectively, then the statistic δ(X) =

∑d
j=1 cjδj(X) is the

UMVUE of the parametric function g(ϑ) =
∑d

j=1 cjgj(ϑ).

Proof. First, we observe that:

Eϑ [δ(X)] =

d∑
j=1

cjEϑ [δj(X)] =

d∑
j=1

cjgj(ϑ) = g(ϑ),

so δ(X) is an unbiased estimator of g(ϑ). Now, let U(X) ∈ U0. According to the
previous theorem and the linearity of the covariance operator, we get that:

Covϑ [δ(X), U(X)] =
d∑
j=1

cjCovϑ [δj(X), U(X)] =
d∑
j=1

cj · 0 = 0.

Since the unbiased estimator δ(X) of g(ϑ) =
∑d

j=1 cjgj(ϑ) is uncorrelated with any
arbitrary unbiased estimator 0, we conclude that it is the UMVUE of the parametric
function g(ϑ).

Theorem 3.7. (Rao - Blackwell) Let V (X) be an unbiased estimator of the paramet-
ric function g(ϑ) with finite variance and T (X) be a sufficient statistic for ϑ. Then,
the statistic V ∗(X) = E [V (X) | T (X)] is also an unbiased estimator of g(ϑ) and it
holds that Varϑ [V ∗(X)] ⩽ Varϑ [V (X)] ∀ϑ ∈ Θ.

Proof. According to the law of iterated expectations, we calculate that:

Eϑ [V ∗(X)] = Eϑ [E (V (X) | T (X))] = Eϑ [V (X)] = g(ϑ).
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According to Jensen’s inequality and the law of iterated expectations, we calculate
that:

Varϑ [V ∗(X)] = Eϑ
[
(V ∗(X)− ϑ)2

]
= Eϑ

[
(E (V (X) | T (X))− ϑ)2

]
= Eϑ

[
(E (V (X)− ϑ | T (X)))2

]
⩽ Eϑ

[
E
(
(V (X)− ϑ)2 | T (X)

)]
= Eϑ

[
(V (X)− ϑ)2

]
= Varϑ [V (X)] .

Theorem 3.8. (Lehmann - Scheffé) Let V (X) be an unbiased estimator of the para-
metric function g(ϑ) with finite variance. If the statistic T (X) is sufficient for ϑ and
complete, then the statistic δ(X) = E [V (X) | T (X)] is the UMVUE of g(ϑ).

Proof. Suppose that there exists some unbiased estimator δ∗(X) of g(ϑ) such that
Varϑ [δ∗(X)] < Varϑ [δ(X)] for some ϑ ∈ Θ. Let V ∗(X) = E [δ∗(X) | T (X)]. Accord-
ing to the Rao - Blackwell theorem, the statistic V ∗(X) is an unbiased estimator of
g(ϑ) with Varϑ [V ∗(X)] ⩽ Varϑ [δ∗(X)]. Then, we observe that:

0 = Eϑ [V ∗(X)− δ(X)] = Eϑ [E (δ∗(X)− V (X) | T (X))] .

Since the statistic T (X) is complete, it follows that E [δ∗(X)− V (X) | T (X)]
a.s.
= 0,

which implies that V ∗(X)
a.s.
= δ(X). Hence, we deduce that:

Varϑ [δ(X)] = Varϑ [V ∗(X)] ⩽ Varϑ [δ∗(X)] < Varϑ [δ(X)] ,

which is a contradiction. Since no other unbiased estimator of g(ϑ) can achieve smaller
variance than that of δ(X) at any arbitrary parameter value ϑ ∈ Θ, we conclude that
δ(X) = E [V (X) | T (X)] is the UMVUE of g(ϑ).

Corollary 3.5. Suppose that the statistic T (X) is sufficient for ϑ and complete. If
it holds that Eϑ [ψ(T )] = g(ϑ) for some function ψ, then the statistic δ(X) = ψ(T ) is
the UMVUE of the parametric function g(ϑ).

Proof. According to the Lehmann - Scheffé theorem, we know that the statistic
δ(X) = E [ψ(T ) | T (X)] is the UMVUE of g(ϑ). By the properties of conditional
expectation, we also know that E [ψ(T ) | T (X)] = ψ(T ). Therefore, we conclude that
δ(X) = ψ(T ) is the UMVUE of g(ϑ).

Note 3.17. To sum up, in order to calculate the UMVUE of a parametric function
g(ϑ), we first need to find a statistic T (X) which is sufficient for ϑ and complete.
Then, we have 2 methods at our disposal:
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i. If we can determine any unbiased estimator V (X) of g(ϑ) and it’s easy to calculate
the conditional expectation ψ(t) = Eϑ [V (X) | T = t], then the statistic ψ(T ) is
the UMVUE of g(ϑ) according to the Lehmann - Scheffé theorem. However,
finding any unbiased estimator of g(ϑ) is not always a trivial task.

ii. If we can determine a function ψ of T (X) such that Eϑ [ψ(T )] = c0 + c1g(ϑ),
then δ(X) = ψ(T )−c0

c1
is the UMVUE of g(ϑ) according to the previous corollary.

However, finding such a function ψ is also not always a trivial task.

Example 3.23. Let X1, . . . , Xn ∼ Bernoulli(p) be a random sample. We want to
find the UMVUEs of the parametric functions g1(p) = p2 and g2(p) = p(1 − p). We
know that the statistic T (X) =

∑n
i=1Xi ∼ Bin(n, p) is sufficient for p and complete.

We calculate that:

E
(
T 2
)
= Var(T ) + [E(T )]2 = np(1− p) + (np)2 = np− np2 + n2p2

= E(T ) + n(n− 1)p2 ⇒ E
[
T (T − 1)

n(n− 1)

]
= p2

According to corollary 3.5, ψ1(T ) =
T (T−1)
n(n−1) is the UMVUE of g1(p). We observe that:

E
(
T 2
)
= np(1− p) + n2p2 − n2p+ n2p = np(1− p)− n2p(1− p) + nE(T ) ⇒

E
(
nT − T 2

)
= n(n− 1)p(1− p) ⇒ E

[
T (n− T )

n(n− 1)

]
= p(1− p).

According to corollary 3.5, the statistic ψ2(T ) =
T (n−T )
n(n−1) is the UMVUE of g2(p).

Example 3.24. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We want to find the
UMVUEs of the parametric function g(λ) = 1

λ2
and λ. According to example 3.10

(page 35), we know that the statistic T (X) =
∑n

i=1Xi ∼ Gamma(n, λ) is sufficient
for λ and complete. We calculate that:

E
(
T 2
)
= Var(T ) + [E(T )]2 =

n

λ2
+
n2

λ2
⇒ E

[
T 2

n(n+ 1)

]
=

1

λ2
.

According to corollary 3.5, ψ1(T ) =
T 2

n(n+1) is the UMVUE of g(λ). Next, we calculate
that:

E
(
1

T

)
=

∫ ∞

0

1

x

λn

(n− 1)!
xn−1e−λxdx =

λn

(n− 1)!

∫ ∞

0
xn−2e−λxdx

=
λn

(n− 1)!

(n− 2)!

λn−1
=

λ

n− 1
⇒ E

(
n− 1

T

)
= λ.

According to corollary 3.5, the statistic ψ2(T ) =
n−1
T is the UMVUE of λ.

Example 3.25. Let X1, . . . , Xn ∼ N (µ, σ2) be a random sample with known σ2. We
want to find the UMVUE of the parametric function g(µ) = eµt for t ∈ R. We know
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that the statistic T (X) = X is sufficient for µ and complete. We also know that:

MX1(t) = E
(
etX1

)
= exp

{
µt+

1

2
σ2t2

}
,

MT (t) = E
(
etX
)
=

n∏
i=1

MXi(t/n) = [MX1(t/n)]
n = exp

{
µt+

1

2n
σ2t2

}
,

E
(
exp

{
tX − 1

2n
σ2t2

})
= eµt.

According to corollary 3.5, ψ(X) = exp
{
tX − 1

2nσ
2t2
}

is the UMVUE of g(µ).

Example 3.26. LetX1, . . . , Xn ∼ N (µ, σ2) be a random sample. We want to find the
UMVUEs of the parametric functions g1(µ, σ2) = σ2 and g2(µ, σ

2) = µ2. According
to example 3.13 (page 37), we know that the statistic T (X) =

(
X,S2

)
is sufficient for

ϑ = (µ, σ2) and complete. According to proposition 3.1 (page 26), we also know that
E(S2) = σ2. Hence, the statistic ψ1

(
X,S2

)
= S2 is the UMVUE of g1 (ϑ) according

to corollary 3.5. Next, we calculate that:

E
(
X

2
)
= Var(X) +

[
E(X)

]2
=

1

n
σ2 + µ2 ⇒ E

(
X

2 − 1

n
S2

)
= µ2.

According to corollary 3.5, ψ2

(
X,S2

)
= X

2 − 1
nS

2 is the UMVUE of g2 (ϑ).

Example 3.27. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. If the function
g : (0,∞) → R is differentiable, we want to find the UMVUE of the parametric
function g(ϑ). We know that T (X) = X(n) is sufficient for ϑ and complete. For
t ∈ (0, ϑ), we calculate that:

fX(n)
(t) =

n

ϑn
tn−1.

Suppose that Eϑ[ψ(T )] = g(ϑ) ∀ϑ > 0. Then, we calculate that:∫ ϑ

0
fX(n)

(t)ψ(t)dt =
n

ϑn

∫ ϑ

0
tn−1ψ(t)dt = g(ϑ) ⇒

n

∫ ϑ

0
tn−1ψ(t)dt = ϑng(ϑ) ⇒ nϑn−1ψ(ϑ) = nϑn−1g(ϑ) + ϑng′(ϑ) ⇒

ψ(ϑ) = g(ϑ) +
ϑ

n
g′(ϑ), ∀ϑ ∈ (0,∞) ⊇ (0, ϑ).

According to corollary 3.5, ψ(T ) = g(T ) + T
n g

′(T ) is the UMVUE of g(ϑ).

Example 3.28. Let X1, . . . , Xn ∼ Poisson(λ) be a random sample. We want to
find the UMVUEs of g1(λ) = λke−λ, g2(λ) = e−kλ and g3(λ) = λk for k ⩽ n. We
know that T (X) =

∑n
i=1Xi ∼ Poisson(λ) is sufficient for λ and complete. Then, we
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observe that:

E
[
1{k}(X1)

]
= P(X1 = k) = e−λ

λk

k!
⇒ E

[
k!1{k}(X1)

]
= e−λλk.

Thus, V1(X) = k!1{k}(X1) is an unbiased estimator of g1(λ). For t = k, k+1, . . . , we
calculate that:

E (V1 | T = t) = E
(
k!1{k}(X1) | T = t

)
= k!P (X1 = k | T = t)

=
k!P (X1 = k,

∑n
i=1Xi = t)

P (
∑n

i=1Xi = t)
=
k!P (X1 = k,

∑n
i=2Xi = t− k)

P (
∑n

i=1Xi = t)

=
k!P(X1 = k)P (

∑n
i=2Xi = t− k)

P (
∑n

i=1Xi = t)

=
k!e−λλk/k! · e−(n−1)λ [(n− 1)λ]t−k /(t− k)!

e−nλ(nλ)t/t!

=
t!

(t− k)!

(
1

n

)k (
1− 1

n

)t−k
.

Therefore, the statistic ψ1(T ) =
T !

(T−k)!
(
1
n

)k (
1− 1

n

)T−k
1{k,k+1,... }(T ) is the UMVUE

of g1(λ) according to the Lehmann - Scheffé theorem. Next, we observe that:

E
[
1{0}(X1) · · ·1{0}(Xk)

]
= P(X1 = 0, . . . , Xk = 0)

iid
= [P(X1 = 0)]k = e−kλ.

Hence, the statistic V2(X) = 1{0}(X1) · · ·1{0}(Xk) is an unbiased estimator of g2(λ).
For k ⩽ n, we calculate that:

E (V2 | T = t) = P (X1 = 0, . . . , Xk = 0 | T = t)

=
P (X1 = 0, . . . , Xk = 0,

∑n
i=1Xi = t)

P (
∑n

i=1Xi = t)

=
P(X1 = 0) · · ·P(Xk = 0)P

(∑n
i=k+1Xi = t

)
P (
∑n

i=1Xi = t)

=
e−kλe−(n−k)λ [(n− k)λ]t /t!

e−nλ(nλ)t/t!
=

(
1− k

n

)t
.

According to the Lehmann - Scheffé theorem, the statistic ψ2(T ) =
(
1− k

n

)T is the
UMVUE of g2(λ). Now, suppose that Eλ [ψ3(T )] = g3(λ) ∀λ > 0. Then, we calculate
that:

∞∑
t=0

ψ3(t)e
−nλ (nλ)

t

t!
= λk ⇒

∞∑
t=0

ntψ3(t)

t!
λt = λkenλ ⇒

∞∑
t=0

ntψ3(t)

t!
λt = λk

∞∑
t=0

(nλ)t

t!
⇒

∞∑
t=0

ntψ3(t)

t!
λt =

∞∑
t=0

nt

t!
λt+k ⇒

∞∑
t=0

ntψ3(t)

t!
λt =

∞∑
t=k

nt−k

(t− k)!
λt ⇒
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ntψ3(t)

t!
=

 0, t = 0, 1, . . . , k − 1

nt−k

(t−k)! , t = k, k + 1, . . .
⇒ ψ3(t) =

 0, t = 0, 1, . . . , k − 1(
t
k

)
k!
nk , t = k, k + 1, . . .

.

According to corollary 3.5, ψ3(T ) =
(
T
k

)
k!
nk1{k,k+1,... }(T ) is the UMVUE of g3(λ).

Note 3.18. If X1, . . . , Xn ∼ Poisson(λ) are iid, then (X1 |
∑n

i=1Xi = t) ∼ Bin
(
t, 1n
)

independently of the value λ.

3.8 Cramér - Rao Inequality

Definition 3.13. i. The function SX(ϑ) = ∂
∂ϑ log f(X;ϑ) is called the score func-

tion of the sample X for the parameter ϑ.

ii. The parametric function IX(ϑ) = Eϑ
[
S2
X(ϑ)

]
is called the Fisher information of

the sample X for the parameter ϑ.

Proposition 3.5. i. If X1, . . . , Xn are independent, then SX(ϑ) =
∑n

i=1 SXi(ϑ).

ii. If g(η) = ϑ is a continuously differentiable function, IX(η) = IX (g(η)) [g′(η)]2.

Proof. i. We observe that:

SX(ϑ) =
∂

∂ϑ
log

n∏
i=1

f(Xi;ϑ) =
∂

∂ϑ

n∑
i=1

log f(Xi;ϑ)

=
n∑
i=1

∂

∂ϑ
log f(Xi;ϑ) =

n∑
i=1

SXi(ϑ).

ii. According to the chain rule, we calculate that:

IX(η) = Eη
[
S2
X(η)

]
= Eη

[(
∂

∂η
log f(X; η)

)2
]
= Eϑ

[(
∂

∂ϑ
log f(X;ϑ)

∂ϑ

∂η

)2
]

= Eϑ

[(
∂

∂ϑ
log f(X;ϑ)

)2
](

∂ϑ

∂η

)2

= IX (g(η))
[
g′(η)

]2
.

Regularity Conditions: Without loss of generality, assume that the distribution of
the sample is continuous with joint PDF f(x;ϑ) for ϑ ∈ Θ ⊆ R and x ∈ S. We define
the following regularity conditions:

I. The parameter space Θ is an open subset of R.

II. The support S = {x ∈ Rn : f(x;ϑ) > 0} doesn’t depend on the value of ϑ.

III. ∂
∂ϑf(x;ϑ) <∞ ∀x ∈ S and ∀ϑ ∈ Θ.
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IV.
∫
S

∂
∂ϑf(x;ϑ)dx = ∂

∂ϑ

∫
S f(x;ϑ)dx = 0 ∀ϑ ∈ Θ.

V. IX(ϑ) ∈ (0,∞) ∀ϑ ∈ Θ.

Proposition 3.6. Suppose that the following regularity conditions are satisfied:

VI. ∂2

∂ϑ2
f(x;ϑ) <∞ ∀x ∈ S and ∀ϑ ∈ Θ.

VII.
∫
S

∂2

∂ϑ2
f(x;ϑ)dx = ∂2

∂ϑ2

∫
S f(x;ϑ)dx = 0 ∀ϑ ∈ Θ.

Then, it follows that:

IX(ϑ) = −Eϑ
[
∂

∂ϑ
SX(ϑ)

]
= −Eϑ

[
∂2

∂ϑ2
log f(X;ϑ)

]
.

Proof. According to integration by parts, we calculate that:

Eϑ
[
∂2

∂ϑ2
log f(X;ϑ)

]
=

∫
S
f(x;ϑ)

∂2

∂ϑ2
log f(x;ϑ)dx =

∫
S
f(x;ϑ)

∂

∂ϑ
Sx(ϑ)dx

=

∫
S

[
∂

∂ϑ
[f(x;ϑ)Sx(ϑ)]− Sx(ϑ)

∂

∂ϑ
f(x;ϑ)

]
dx,

where Sx(ϑ) = ∂
∂ϑ log f(x;ϑ) = 1

f(x;ϑ)
∂
∂ϑf(x;ϑ) is the score function. According to

regularity condition VII, we calculate that:∫
S

∂

∂ϑ
[f(x;ϑ)Sx(ϑ)] dx =

∫
S

∂

∂ϑ

[
f(x;ϑ)

1

f(x;ϑ)

∂

∂ϑ
f(x;ϑ)

]
dx

=

∫
S

∂2

∂ϑ2
f(x;ϑ)dx =

∂2

∂ϑ2

∫
S
f(x;ϑ)dx = 0.

Finally, we conclude that:

−Eϑ
[
∂2

∂ϑ2
log f(X;ϑ)

]
=

∫
S
Sx(ϑ)

∂

∂ϑ
f(x;ϑ)dx

=

∫
S
Sx(ϑ)f(x;ϑ)

1

f(x;ϑ)

∂

∂ϑ
f(x;ϑ)dx

=

∫
S
Sx(ϑ)f(x;ϑ)

∂

∂ϑ
log f(x;ϑ)dx

=

∫
S
f(x;ϑ)

[
∂

∂ϑ
log f(x;ϑ)

]2
dx

= Eϑ

[(
∂

∂ϑ
log f(X;ϑ)

)2
]
= Eϑ

[
S2
X(ϑ)

]
= IX(ϑ).

Proposition 3.7. Let X be a sample which satisfies the regularity conditions I-V.

i. It holds that E [SX(ϑ)] = 0 and Varϑ [SX(ϑ)] = Eϑ
[
S2
X(ϑ)

]
= IX(ϑ) ∀ϑ ∈ Θ.

ii. If X1, . . . , Xn are independent, then IX(ϑ) =
∑n

i=1 IXi(ϑ).
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iii. If X1, . . . , Xn are iid, then IX(ϑ) = nIX1(ϑ).

Proof. i. According to regularity condition IV, we calculate that:

E [SX(ϑ)] =
∫
S
f(x;ϑ)Sx(ϑ)dx =

∫
S
f(x;ϑ)

∂

∂ϑ
log f(x;ϑ)dx

=

∫
S
f(x;ϑ)

1

f(x;ϑ)

∂

∂ϑ
f(x;ϑ)dx =

∫
S

∂

∂ϑ
f(x;ϑ)dx =

∂

∂ϑ

∫
S
f(x;ϑ)dx = 0.

Hence, we infer that:

Varϑ [SX(ϑ)] = Eϑ
[
S2
X(ϑ)

]
− [Eϑ (SX(ϑ))]2 = Eϑ

[
S2
X(ϑ)

]
= IX(ϑ).

ii. Since the random variables X1, X2, . . . , Xn are independent, it follows that:

IX(ϑ) = Varϑ [SX(ϑ)] = Varϑ

[
n∑
i=1

SXi(ϑ)

]
=

n∑
i=1

Varϑ [SXi(ϑ)] =

n∑
i=1

IXi(ϑ).

iii. Since the random variables X1, X2, . . . , Xn are iid, it follows that:

IX1(ϑ) = IX2(ϑ) = · · · = IXn(ϑ) ⇒ IX(ϑ) =
n∑
i=1

IXi(ϑ) = nIX1(ϑ).

Theorem 3.9. (Cramér - Rao Inequality) Let X be a sample with joint PDF f(x;ϑ)

for ϑ ∈ Θ ⊆ R and x ∈ S which satisfies the regularity conditions I-V. Suppose
that the statistic T (X) is an estimator of g(ϑ) with finite variance which satisfies the
following regularity condition:

VIII.
∫
S T (x)

∂
∂ϑf(x;ϑ)dx = ∂

∂ϑ

∫
S T (x)f(x;ϑ)dx = ∂

∂ϑEϑ [T (X)] ∀ϑ ∈ Θ,

where Eϑ [T (X)] = g(ϑ) + biasg(ϑ) [T (X)]. Then, it follows that:

Varϑ [T (X)] ⩾ 1

IX(ϑ)

[
∂

∂ϑ
Eϑ [T (X)]

]2
, ∀ϑ ∈ Θ.

Proof. By making use of the regularity conditions VII and IV, we calculate that:

∂

∂ϑ
Eϑ [T (X)] =

∂

∂ϑ

∫
S
T (x)f(x;ϑ)dx =

∫
S
T (x)

∂

∂ϑ
f(x;ϑ)dx

=

∫
S
T (x)f(x;ϑ)

1

f(x;ϑ)

∂

∂ϑ
f(x;ϑ)dx

=

∫
S
f(x;ϑ)T (x)

∂

∂ϑ
log f(x;ϑ)dx = Eϑ [T (X)SX(ϑ)]

= Covϑ [T (X),SX(ϑ)] + Eϑ [T (X)]Eϑ [SX(ϑ)] = Covϑ [T (X),SX(ϑ)] ,
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where Eϑ [SX(ϑ)] = 0 according to the previous proposition. By making use of the
covariance inequality, we deduce that:[

∂

∂ϑ
Eϑ [T (X)]

]2
= [Covϑ (T (X),SX(ϑ))]2

⩽ Varϑ [T (X)]Varϑ [SX(ϑ)] = Varϑ [T (X)] IX(ϑ),

where Varϑ [SX(ϑ)] = IX(ϑ) according to the previous proposition. Therefore, we
conclude that:

Varϑ [T (X)] ⩾ 1

IX(ϑ)

[
∂

∂ϑ
Eϑ [T (X)]

]2
.

Corollary 3.6. If the statistic T (X) is an unbiased estimator of the parametric
function g(ϑ), then it follows that:

Varϑ [T (X)] ⩾ [g′(ϑ)]2

IX(ϑ)
, ∀ϑ ∈ Θ.

Proof. If T (X) is an unbiased estimator of g(ϑ), then ∂
∂ϑEϑ [T (X)] = g′(ϑ), so the

desired result follows immediately from the Cramér - Rao inequality.

Definition 3.14. i. An unbiased estimator T (X) of the parametric function g(ϑ)

which achieves the Cramér - Rao lower bound, i.e. for which it holds that:

Varϑ [T (X)] =
[g′(ϑ)]2

IX(ϑ)
, ∀ϑ ∈ Θ,

is called an efficient estimator of g(ϑ).

ii. Let T (X) be an unbiased estimator of the parametric function g(ϑ). The following
ratio:

eg(ϑ) [T (X)] =
[g′(ϑ)]2 /IX(ϑ)

Varϑ [T (X)]
∈ [0, 1].

is called the efficiency of T (X) with respect to g(ϑ).

Note 3.19. We observe that the statistic T (X) is an efficient estimator of g(ϑ) if
and only if eg(ϑ) [T (X)] = 1 ∀ϑ ∈ Θ. If T (X) is an efficient estimator of g(ϑ), then
it’s also the unique UMVUE of g(ϑ). The converse is generally not true. If T (X) is
the UMVUE of g(ϑ), it’s not necessarily an efficient estimator of g(ϑ), i.e. it doesn’t
necessarily achieve the Cramér - Rao lower bound. In this case, it follows that there
doesn’t exist any efficient estimator of g(ϑ).

Proposition 3.8. A statistic T (X) is an efficient estimator of g(ϑ) if and only if there
exists a function k(ϑ) ̸= 0 such that SX(ϑ) = k(ϑ) [T (X)− g(ϑ)] ∀ϑ ∈ Θ. Then, it
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holds that k(ϑ) = IX(ϑ)
g′(ϑ) .

Proof. We know that T (X) is an efficient estimator of g(ϑ) if and only if it’s an unbi-
ased estimator of g(ϑ) and it achieves the Cramér - Rao lower bound. Furthermore, we
know that T (X) achieves the Cramér - Rao lower bound if and only if the covariance
inequality invoked in the proof of the Cramér - Rao inequality holds as an equality
∀ϑ ∈ Θ. We also know that the covariance inequality holds as an equality if and only
if there exist functions c0(ϑ) and c1(ϑ) ̸= 0 such that T (X) = c0(ϑ) + c1(ϑ)SX(ϑ)
∀ϑ ∈ Θ. Then, we calculate that:

g(ϑ) = E [T (X)] = c0(ϑ) + c1(ϑ)Eϑ [SX(ϑ)] = c0(ϑ),

0 = c′0(ϑ) + c′1(ϑ)SX(ϑ) + c1(ϑ)
∂

∂ϑ
SX(ϑ) ⇒

g′(ϑ) + c′1(ϑ)Eϑ [SX(ϑ)] + c1(ϑ)Eϑ
[
∂

∂ϑ
SX(ϑ)

]
= 0 ⇒ c1(ϑ) =

g′(ϑ)

IX(ϑ)
.

Therefore, we conclude that:

T (X) = g(ϑ) +
g′(ϑ)

IX(ϑ)
SX(ϑ) ⇔ SX(ϑ) =

IX(ϑ)
g′(ϑ)︸ ︷︷ ︸
k(ϑ)

[T (X)− g(ϑ)] .

Proposition 3.9. Suppose that the distribution of the sample X belongs to the one-
parameter multivariate exponential family with f(x;ϑ) = h(x)eQ(ϑ)T (x)−A(ϑ). If the
parameter space Θ is an open subset of R and the function Q : Θ → R is continuously
differentiable with Q′(ϑ) ̸= 0 ∀ϑ ∈ Θ, then all of the regularity conditions are satisfied.
Additionally, the statistic T (X) is an efficient estimator of the parametric function
g(ϑ) = A′(ϑ)

Q′(ϑ) . In fact, an efficient estimator of h(ϑ) exists if and only if the distribution
of the sample belongs to the exponential family and the parametric function h(ϑ) is
of the form h(ϑ) = c0 + c1g(ϑ) for some constants c0 ∈ R, c1 ̸= 0.

Proof. Regularity conditions I and II are satisfied by assumption. The rest of the
regularity conditions can be shown to be satisfied by suitable application of the dom-
inated convergence theorem. Then, we calculate that:

SX(ϑ) =
∂

∂ϑ
log f(X;ϑ) = Q′(ϑ)T (X)−A′(ϑ) = Q′(ϑ)

[
T (X)− A′(ϑ)

Q′(ϑ)

]
.

According to the previous proposition, it follows that the statistic T (X) is an efficient
estimator of g(ϑ) = A′(ϑ)

Q′(ϑ) . According to the proof of the previous proposition, we
know that T (X) is an efficient estimator of g(ϑ) if and only if there exist functions
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c0(ϑ) and c1(ϑ) ̸= 0 such that SX(ϑ) = c0(ϑ)+c1(ϑ)T (X) ∀ϑ ∈ Θ. Then, we calculate
that:

log f(X;ϑ) = T (X)

∫
c1(ϑ)dϑ︸ ︷︷ ︸

C1(ϑ)+A1(X)

+

∫
c0(ϑ)dϑ︸ ︷︷ ︸

C0(ϑ)+A0(X)

⇔

f(x;ϑ) = eA0(x)+A1(x)T (x)︸ ︷︷ ︸
h(x)

eC1(ϑ)T (x)+C2(ϑ).

Therefore, T (X) is an efficient estimator of g(ϑ) if and only if the distribution of the
sample belongs to the exponential family of distributions with Q(ϑ) = C1(ϑ) and
A(ϑ) = −C2(ϑ).

Example 3.29. Let X1, . . . , Xn ∼ Bernoulli(p) be a random sample. We calculate
that:

log f(x; p) = log p
n∑
i=1

xi + log(1− p)

(
n−

n∑
i=1

xi

)
,

SX(p) =
∂

∂p
log f(X; p) =

1

p

n∑
i=1

Xi −
1

1− p

(
n−

n∑
i=1

Xi

)

=
1

p(1− p)

(
n∑
i=1

Xi − np

)
=

n

p(1− p)

(
X − p

)
,

where k(p) = n
p(1−p) ̸= 0 ∀p ∈ (0, 1). According to proposition 3.8, the statistic

T (X) = X is an efficient estimator of the parametric function g(p) = p. Alternatively,
we observe that the parameter space Θ = (0, 1) is an open subset of R and the
distribution of the sample X belongs to the exponential family with joint PMF:

f(x; p) = exp

{
n [log p− log(1− p)]x− n log

1

1− p

}
,

where T (x) = x, Q(p) = n [log p− log(1− p)] and A(p) = n log 1
1−p . We calculate

that:
Q′(p) =

n

p
+

n

1− p
=

n

p(1− p)
̸= 0, A′(p) =

n

1− p
,

so all regularity conditions are satisfied. According to proposition 3.9, T (X) = X is
an efficient estimator of g(p) = A′(p)

Q′(p) = p. Alternatively, we calculate that:

∂2

∂p2
log f(X; p) = − 1

p2

n∑
i=1

Xi −
1

(1− p)2

(
n−

n∑
i=1

Xi

)
,

IX(p) = −E
[
∂2

∂p2
log f(X; p)

]
=

1

p2

n∑
i=1

E(Xi)−
1

(1− p)2

[
n−

n∑
i=1

E(Xi)

]
=
np

p2
+

n− np

(1− p)2
=

n

p(1− p)
∈ (0,∞).
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We also know that:
E(X) = E(X1) = p = g(p),

Var(X) =
Var(X1)

n
=

1

n
p(1− p) =

[g′(p)]2

IX(p)
.

Therefore, we conclude that T (X) = X is an efficient estimator of p.

Example 3.30. Let X1, . . . , Xn be a random sample with f(x;ϑ) = log ϑ
ϑ−1 ϑ

x for ϑ > 1

and x ∈ (0, 1). We calculate that:

log f(x;ϑ) = n log log ϑ− n log(ϑ− 1) + log ϑ
n∑
i=1

xi,

SX(ϑ) =
∂

∂ϑ
log f(X;ϑ) =

n

ϑ log ϑ
− n

ϑ− 1
+

1

ϑ

n∑
i=1

Xi

=
1

ϑ

(
n∑
i=1

Xi −
nϑ

ϑ− 1
+

n

log ϑ

)
=
n

ϑ

[
X −

(
ϑ

ϑ− 1
− 1

log ϑ

)]
,

where k(ϑ) = n
ϑ ̸= 0 ∀ϑ > 1. According to proposition 3.8, the statistic T (X) = X

is an efficient estimator of the parametric function g(ϑ) = ϑ
ϑ−1 − 1

log ϑ . Alternatively,
we observe that the parameter space Θ = (1,∞) is an open subset of R and the
distribution of the sample X belongs to the exponential family with the following
joint PDF:

f(x;ϑ) = exp

{
nx log ϑ− n

[
log(ϑ− 1) + log

1

log ϑ

]}
,

where T (x) = x, Q(ϑ) = n log ϑ and A(ϑ) = n
[
log(ϑ− 1) + log 1

log ϑ

]
. We calculate

that:
Q′(ϑ) =

n

ϑ
̸= 0, A′(ϑ) =

n

ϑ− 1
− n

ϑ log ϑ
,

so all of the regularity conditions are satisfied. According to proposition 3.9, the
statistic T (X) = X is an efficient estimator of g(ϑ) = A′(ϑ)

Q′(ϑ) = ϑ
ϑ−1 − 1

log ϑ . We note
that it would have been exceptionally arduous to calculate the variance of T (X) to
compare it against the Cramér - Rao lower bound.

Note 3.20. If we know of an unbiased estimator of g(ϑ), it suffices to calculate its
variance and compare it against the Cramér - Rao lower bound to check whether
it’s efficient. Otherwise, we can apply proposition 3.8 or proposition 3.9 to check
whether an efficient estimator of g(ϑ) exists or not. Indicatively, in table 3.3 we
summarize the Fisher information of 1 observation for the parameters of some widely
used distributions.
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Bernoulli(p) 1/p(1− p)

Bin(N, p) with known N N/p(1− p)

Poisson(λ) 1/λ

Exp(ϑ)
1/ϑ2Beta(ϑ, 1)

Beta(1, ϑ)
Gamma(k, λ) with known k k/λ2

N (µ, σ2) with known σ2 1/σ2

N (µ, σ2) with known µ 1/2σ4

Table 3.3: Fisher Information of Notable Distributions

3.9* Multivariate Cramér - Rao Inequality

Definition 3.15. Let X = (X1, X2, . . . , Xr) ∈ Rr and Y = (Y1, Y2, . . . , Ys) ∈ Rs be
2 random vectors. Then, we define:

• E(X) = [E(X1), E(X2), . . . , E(Xr)]
T ∈ Rr the mean vector of X;

• Var(X) = E
(
XXT)− E(X) [E(X)]T ∈ Rr×r the covariance matrix of X;

• Cov(X,Y ) = E
(
XY T)−E(X) [E(Y )]T ∈ Rr×s the covariance matrix between

X and Y .

Proposition 3.10. Let X ∈ Rr, Y ∈ Rs be random vectors, A ∈ Rm×r, B ∈ Rm×s

be constant matrices and c ∈ Rm, d ∈ Rm be constant vectors. Then, we know that:

i. E(AX + c) = AE(X) + c,

ii. E(AX +BY ) = AE(X) +BE(Y ),

iii. Var(AX + c) = AVar(X)AT,

iv. Var(X) is symmetric and positive semi-definite, i.e. uTVar(X)u ⩾ 0 ∀u ∈ Rr.

v. Cov(X, c) = 0r×m,

vi. Cov(X,X) = Var(X),

vii. Cov(Y,X) = [Cov(X,Y )]T,

viii. Cov(AX + c,BY + d) = ACov(X,Y )BT,

ix. Var(AX+BY ) = AVar(X)AT+BVar(Y )BT+ACov(X,Y )BT+BCov(Y,X)AT,

x. X,Y independent ⇒ Cov(X,Y ) = 0r×s ⇒ E
(
XY T) = E(X) [E(Y )]T.

Definition 3.16. i. The function SX(ϑ) = ∇ϑ log f(X;ϑ) ∈ Rs is called the score
function of the sample X for the parameter ϑ ∈ Rs.
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ii. The parametric function IX(ϑ) = E
[
SX(ϑ)ST

X(ϑ)
]
∈ Rs×s is called the Fisher

information matrix of the sample X for the parameter ϑ.

Proposition 3.11. If g(η) = ϑ is a continuously differentiable function with Jacobian
matrix Jg(η) ∈ Rs×d, then IX(η) = J T

g (η)IX (g(η))Jg(η) ∈ Rd×d.

Proof. According to the chain rule, we calculate that:

IX(η) = Eη
[
SX(η)ST

X(η)
]
= Eη

[
∇η log f(X; η)∇T

η log f(X; η)
]

= Eϑ
[
J T
g (η)∇ϑ log f(X;ϑ)∇T

ϑ log f(X;ϑ)Jg(η)
]

= J T
g (η)Eϑ

[
∇ϑ log f(X;ϑ)∇T

ϑ log f(X;ϑ)
]
Jg(η)

= J T
g (η)IX (g(η))Jg(η).

Regularity Conditions: Without loss of generality, assume that the distribution
of the sample is continuous with joint PDF f(x;ϑ) for ϑ ∈ Θ ⊆ Rs and x ∈ S. We
define the following regularity conditions:

I. The parameter space Θ is an open subset of Rs.

II. The support S = {x ∈ Rn : f(x;ϑ) > 0} doesn’t depend on the value of ϑ.

III. ∂
∂ϑj

f(x;ϑ) <∞ ∀x ∈ S and ∀ϑ ∈ Θ for j = 1, 2, . . . , s.

IV.
∫
S

∂
∂ϑj

f(x;ϑ)dx = ∂
∂ϑj

∫
S f(x;ϑ)dx = 0 ∀ϑ ∈ Θ for j = 1, 2, . . . , s.

V. The matrix IX(ϑ) ∈ Rs×s is positive definite ∀ϑ ∈ Θ.

Proposition 3.12. Suppose that the following regularity conditions are satisfied:

VI. ∂2

∂ϑj∂ϑk
f(x;ϑ) <∞ ∀x ∈ S and ∀ϑ ∈ Θ for j, k = 1, 2, . . . , s.

VII. ∂2

∂ϑj∂ϑk
f(x;ϑ)dx = ∂2

∂ϑj∂ϑk

∫
S f(x;ϑ)dx = 0 ∀ϑ ∈ Θ for j, k = 1, 2, . . . , s.

Then, it follows that IX(ϑ) = −Eϑ [HX(ϑ)], where HX(ϑ) is the Hessian matrix of
log f(X;ϑ), i.e. the Jacobian matrix of the score function SX(ϑ).

Proof. We follow the same steps as the proof of proposition 3.6 (page 52).

Proposition 3.13. Let X be a sample which satisfies the regularity conditions I-V.
Then, E [SX(ϑ)] = 0 and Varϑ [SX(ϑ)] = Eϑ

[
SX(ϑ)ST

X(ϑ)
]
= IX(ϑ) ∀ϑ ∈ Θ.

Proof. We follow the same steps as the proof of proposition 3.7 (page 52).
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Lemma 3.1. (Multivariate Covariance Inequality) Let X ∈ Rn and Y ∈ Rm be 2

random vectors with positive definite covariance matrices. Then, it follows that the
matrix difference Var(X)− Cov(X,Y ) [Var(Y )]−1 Cov(Y,X) is positive semi-definite.

Proof. Without loss of generality, assume that E(X) = E(Y ) = 0. For any constant
matrix A ∈ Rn×m, we know that the matrix (X +AY ) (X +AY )T is positive semi-
definite. Then, we observe that:

(X +AY ) (X +AY )T = XXT +AYXT +XY TAT +AY Y TAT ⇒

E
[
(X +AY ) (X +AY )T

]
= Var(X) +ACov(Y,X) + Cov(X,Y )AT +AVar(Y )AT.

Let A = −Cov(X,Y ) [Var(Y )]−1. Since Cov(Y,X) = [Cov(X,Y )]T, it follows that:

E
[
(X +AY ) (X +AY )T

]
= Var(X)− Cov(X,Y ) [Var(Y )]−1 Cov(Y,X).

Therefore, we conclude that the matrix Var(X)−Cov(X,Y ) [Var(Y )]−1 Cov(Y,X) is
positive semi-definite.

Theorem 3.10. (Multivariate Cramér - Rao Inequality) Let X be a sample with joint
PDF f(x;ϑ) for ϑ ∈ Θ ⊆ Rs and x ∈ S which satisfies the regularity conditions I-V.
Suppose that the statistic T (X) is an estimator of the parametric function g(ϑ) ∈ Rd

with finite variance which satisfies the following regularity condition:

VIII.
∫
S Th(x)

∂
∂ϑj

f(x;ϑ)dx = ∂
∂ϑj

∫
S Th(x)f(x;ϑ)dx = ∂

∂ϑj
Eϑ [Th(X)] ∀ϑ ∈ Θ,

where Eϑ [Th(X)] = gh(ϑ) + biasgh(ϑ) [Th(X)] for h = 1, 2, . . . , d. Then, the matrix
difference Varϑ [T (X)]−Jm(ϑ)I−1

X (ϑ)J T
m(ϑ) ∈ Rd×d is positive semi-definite ∀ϑ ∈ Θ,

where Jm ∈ Rd×s is the Jacobian matrix of m(ϑ) = Eϑ [T (X)].

Proof. By making use of the regularity conditions VII and IV, we calculate that:

∇ϑmh(ϑ) = ∇ϑEϑ [Th(X)] = ∇ϑ

∫
S
Th(x)f(x;ϑ)dx

=

∫
S
Th(x)∇ϑf(x;ϑ)dx =

∫
S
Th(x)f(x;ϑ)

1

f(x;ϑ)
∇ϑf(x;ϑ)dx

=

∫
S
f(x;ϑ)Th(x)∇ϑ log f(x;ϑ)dx = Eϑ [Th(X)SX(ϑ)]

= Covϑ [Th(X),SX(ϑ)] + Eϑ [Th(X)]Eϑ [SX(ϑ)]

= Covϑ [Th(X),SX(ϑ)] ,

where Eϑ [SX(ϑ)] = 0 according to the previous proposition. Then, we infer that:

Covϑ [T (X),SX(ϑ)] [Var (SX(ϑ))]−1 Covϑ [SX(ϑ), T (X)] = Jm(ϑ)I−1
X (ϑ)J T

m(ϑ),
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where Var [SX(ϑ)] = IX(ϑ) according to the previous proposition. By making use
of the multivariate covariance inequality, we conclude that the matrix difference
Varϑ [T (X)]− Jm(ϑ)I−1

X (ϑ)J T
m(ϑ) is positive semi-definite.

Corollary 3.7. If the statistic T (X) is an unbiased estimator of the parametric
function g(ϑ), then the matrix difference Varϑ [T (X)]−Jg(ϑ)I−1

X (ϑ)J T
g (ϑ) is positive

semi-definite ∀ϑ ∈ Θ.

Proof. If T (X) is an unbiased estimator of g(ϑ), then m(ϑ) = Eϑ [T (X)] = g(ϑ), so
the result follows immediately from the multivariate Cramér - Rao inequality.

Definition 3.17. An unbiased estimator T (X) of g(ϑ) which achieves the Cramér
- Rao lower bound, i.e. for which it holds that Varϑ [T (X)] = Jg(ϑ)I−1

X (ϑ)J T
g (ϑ)

∀ϑ ∈ Θ, is called an efficient estimator of g(ϑ).

Proposition 3.14. A statistic T (X) is an efficient estimator of g(ϑ) if and only if
there exists a function K(ϑ) ∈ Rd×s such that K(ϑ)SX(ϑ) = T (X) − g(ϑ) ∀ϑ ∈ Θ.
Then, it holds that K(ϑ) = Jg(ϑ)I−1

X (ϑ).

Proof. We know that T (X) is an efficient estimator of g(ϑ) if and only if it’s an
unbiased estimator of g(ϑ) and it achieves the Cramér - Rao lower bound. Further-
more, we know that T (X) achieves the Cramér - Rao lower bound if and only if
the covariance inequality invoked in the proof of the Cramér - Rao inequality holds
as an equality ∀ϑ ∈ Θ. We also know that the covariance inequality holds as an
equality if and only if there exist functions c0(ϑ) ∈ Rd and C1(ϑ) ∈ Rd×s such that
T (X) = c0(ϑ) + C1(ϑ)SX(ϑ) ∀ϑ ∈ Θ. Then, we calculate that:

g(ϑ) = E [T (X)] = c0(ϑ) + C1(ϑ)Eϑ [SX(ϑ)] = c0(ϑ),

0 = Jc0(ϑ) +
∂C1

∂ϑ
SX(ϑ) + C1(ϑ)HX(ϑ) ⇒

Jg(ϑ) +
∂C1

∂ϑ
Eϑ [SX(ϑ)] + C1(ϑ)Eϑ [HX(ϑ)] = 0 ⇒ C1(ϑ) = Jg(ϑ)I−1

X (ϑ).

Therefore, we conclude that:

T (X) = g(ϑ) + Jg(ϑ)I−1
X (ϑ)︸ ︷︷ ︸

K(ϑ)

SX(ϑ).

Proposition 3.15. Suppose that the distribution of the sample X belongs to the mul-
tiparameter multivariate full exponential family with f(x;ϑ) = h(x)e⟨Q(ϑ),T (x)⟩−A(ϑ).
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If the parameter space Θ is an open subset of Rs and the function Q : Θ → Rs is con-
tinuously differentiable with invertible Jacobian matrix JQ, then all of the regularity
conditions are satisfied. Furthermore, the statistic T (X) is an efficient estimator of
the parametric function g(ϑ) = J −1

Q (ϑ)∇ϑA(ϑ) ∈ Rs.

Proof. Regularity conditions I and II are satisfied by assumption. The rest of the
regularity conditions can be shown to be satisfied by suitable application of the dom-
inated convergence theorem. Then, we calculate that:

SX(ϑ) = ∇ϑ log f(X;ϑ) = JQ(ϑ)T (X)−∇ϑA(ϑ)

= JQ(ϑ)
[
T (X)− J −1

Q (ϑ)∇ϑA(ϑ)
]
.

According to the previous proposition, it follows that the statistic T (X) is an efficient
estimator of g(ϑ) = J −1

Q (ϑ)∇ϑA(ϑ).

Example 3.31. Let X1, . . . , Xn ∼ N (ϑ1, ϑ2) be a random sample. We want to show
that the statistic T (X) =

(
X, 1n

∑n
i=1X

2
i

)
is an efficient estimator of the parametric

function g(ϑ) =
(
ϑ1, ϑ

2
1 + ϑ2

)
, whereas the sample variance S2 isn’t an efficient esti-

mator of ϑ2. We observe that the parameter space Θ = R× (0,∞) is an open subset
of R2. According to example 3.13 (page 37), the distribution of the sample belongs
to the exponential family with:

T (x) =

(
x,

1

n

n∑
i=1

x2i

)
, Q(ϑ) =

(
nϑ1
ϑ2

,− n

2ϑ2

)
, A(ϑ) =

nϑ21
2ϑ2

+
n log ϑ2

2
.

We calculate that:

∇ϑA(ϑ) =

 nϑ1
ϑ2

−nϑ21
2ϑ22

+ n
2ϑ2

 , JQ(ϑ) =

 n
ϑ2

−nϑ1
ϑ22

0 n
2ϑ22

 , J −1
Q (ϑ) =

ϑ2n 2ϑ1ϑ2
n

0
2ϑ22
n

 ,
so all of the regularity conditions are satisfied. According to proposition 3.15, the
statistic T (X) =

(
X, 1n

∑n
i=1X

2
i

)
is an efficient estimator of the parametric function

g(ϑ) = J −1
Q (ϑ)∇ϑA(ϑ) =

(
ϑ1, ϑ

2
1 + ϑ2

)
. Alternatively, we calculate that:

log f(x;ϑ) = −n
2
log(2π)− n

2
log ϑ2 −

1

2ϑ2

n∑
i=1

(xi − ϑ1)
2,

SX(ϑ) = ∇ϑ log f(X;ϑ) =

 1
ϑ2

∑n
i=1(Xi − ϑ1)

− n
2ϑ2

+ 1
2ϑ22

∑n
i=1(Xi − ϑ1)

2

 ,
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HX(ϑ) = JSX
(ϑ) =

 − n
ϑ2

− 1
ϑ22

∑n
i=1(Xi − ϑ1)

− 1
ϑ22

∑n
i=1(Xi − ϑ1)

n
2ϑ22

− 1
ϑ32

∑n
i=1(Xi − ϑ1)

2

 ,

IX(ϑ) = −E [HX(ϑ)] =

 n
ϑ2

0

0 n
2ϑ22

 , Jg(ϑ) =

 1 0

2ϑ1 1

 .
According to example 2.4 (page 21), we know that:

E [T (X)] =

 ϑ1

ϑ21 + ϑ2

 , Var [T (X)] =

 ϑ2
n

2ϑ1ϑ2
n

2ϑ1ϑ1
n

4ϑ21ϑ2+2ϑ22
n

 = Jg(ϑ)I−1
X (ϑ)J T

g (ϑ).

According to proposition 3.14, the statistic T (X) =
(
X, 1n

∑n
i=1X

2
i

)
is an efficient

estimator of the parametric function g(ϑ). Alternatively, we observe that:

Jg(ϑ)I−1
X (ϑ)SX(ϑ) =

 ϑ2
n 0

2ϑ1ϑ2
n

2ϑ22
n


 1

ϑ2

∑n
i=1(Xi − ϑ1)

− n
2ϑ2

+ 1
2ϑ22

∑n
i=1(Xi − ϑ1)

2


=

 X − ϑ1

1
n

∑n
i=1X

2
i − ϑ21 − ϑ2

 = T (X)− g(ϑ).

Therefore, the statistic T (X) =
(
X, 1n

∑n
i=1X

2
i

)
is an efficient estimator of the para-

metric function g(ϑ). Now, we let h(ϑ) = ϑ2 and calculate that Jh(ϑ) = (0, 1).
According to note 3.12 (page 38), we know that:

Var
(
S2
)
=

2

n− 1
ϑ22 >

2

n
ϑ22 = Jh(ϑ)I−1

X (ϑ)J T
h (ϑ),

which implies that the sample variance S2 isn’t an efficient estimator of ϑ2. Since
S2 is the UMVUE of ϑ2, according to example 3.26 (page 49), it follows that there
doesn’t exist any efficient estimator of ϑ2.

3.10 Asymptotic Distribution of Estimators

Definition 3.18. (Convergence of Random Variables)

i. Almost sure convergence: Xn
a.s.→ X ⇔ P (limn→∞Xn = X) = 1

ii. Convergence in probability: Xn
p→ X ⇔ limn→∞ P (|Xn −X| < ε) = 1 for

all ε > 0

iii. Convergence in distribution: Xn
d→ X ⇔ limn→∞ FXn(x) = FX(x) for

every continuity point x of the CDF FX
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Definition 3.19. i. A statistic Tn(X) is called a strongly consistent estimator of
g(ϑ) if Tn(X)

a.s.→ g(ϑ) ∀ϑ ∈ Θ.

ii. A statistic Tn(X) is called a (weakly) consistent estimator of g(ϑ) if Tn(X)
p→ g(ϑ)

∀ϑ ∈ Θ.

iii. A statistic Tn(X) has an asymptotic distribution if there exists a sequence (rn)n⩾1

of real numbers with limn→∞ rn = ∞ such that rn [Tn(X)− g(ϑ)]
d→ Y for some

random variable Y .

Interpretation: The consistency property ensures that all the most probable values
of an estimator of ϑ are concentrated more and more tightly around the true value
of ϑ, as we’re collecting more and more data. Therefore, it doesn’t provide any
information about the properties of an estimator based on a sample of a given size,
but rather only about its asymptotic behavior.

All results concerning the asymptotic distribution of estimators are consequences
of well-known results in the field of measure-theoretic probability theory. We are going
to mention those useful probabilistic results without proof and build open them to
prove all the needed results in asymptotic statistics. The proofs of those probabilistic
results can be found in any standard probability theory textbook such as "Probability
and Measure" by Patrick Billingsley and "Probability Theory and Examples" by Rick
Durrett.

Proposition 3.16. i. Xn
a.s.→ X ⇒ Xn

p→ X ⇒ Xn
d→ X.

ii. If X = c is a degenerate random variable, i.e. it holds that P(X = c) = 1, then
Xn

p→ c ⇔ Xn
d→ c.

iii. If Xn
a.s./p→ X and Yn

a.s./p→ Y , then Xn + Yn
a.s./p→ X + Y and XnYn

a.s./p→ XY . If
Yn ̸= 0 and Y ̸= 0, then Xn

Yn

a.s./p→ X
Y .

Corollary 3.8. If the statistic Tn(X) is a strongly consistent estimator of g(ϑ), then
it’s also a consistent estimator of g(ϑ).

Proof. According to the previous proposition, we know that Tn(X)
a.s.→ g(ϑ) implies

that Tn(X)
p→ g(ϑ).

Theorem 3.11. (Slutsky) If Xn
d→ X and Yn

d→ c, then Xn + Yn
d→ X + c and

XnYn
d→ cX. If Yn ̸= 0 and c ̸= 0, then Xn

Yn

d→ X
c .

Definition 3.20. i. A statistic Tn(X) is called an asymptotically unbiased estima-
tor of g(ϑ) if it holds that limn→∞ Eϑ [Tn(X)] = g(ϑ).

ii. A statistic Tn(X) is called an asymptotically efficient estimator of ϑ if it holds that
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√
n [Tn(X)− ϑ]

d→ N
(
0, I−1

X1
(ϑ)
)

, i.e. it’s asymptotically normal with asymp-
totic variance which is equal to the Cramér - Rao lower bound.

Note 3.21. The property of asymptotic efficiency ensures that the variance of an
estimator becomes as small as possible, as we’re collecting more and more data, even
if it doesn’t achieve the smallest possible variance based on a sample of a given size.

Proposition 3.17. (Sufficient Conditions for Consistency)

i. If the statistic Tn(X) is an unbiased estimator of the parametric function g(ϑ)

with limn→∞ Varϑ [Tn(X)] = 0, then it’s a consistent estimator of g(ϑ).

ii. If the statistic Tn(X) is an asymptotically unbiased estimator of g(ϑ) and it holds
that limn→∞ Varϑ [Tn(X)] = 0, then it’s a consistent estimator of g(ϑ).

iii. If rn [Tn(X)− g(ϑ)]
d→ Y for some sequence (rn)n⩾1 with limn→∞ rn = ∞, then

the statistic Tn(X) is a consistent estimator g(ϑ).

Proof. i. According to Chebyshev’s inequality, we know that:

Pϑ [|Tn(X)− g(ϑ)| ⩾ ε] ⩽ Varϑ [Tn(X)]

ε2
n→∞→ 0 ⇒

lim
n→∞

Pϑ [|Tn(X)− g(ϑ)| ⩾ ε] = 0 ⇒ lim
n→∞

Pϑ [|Tn(X)− g(ϑ)| < ε] = 1.

ii. According to Markov’s inequality, we know that:

Pϑ [|Tn(X)− g(ϑ)| ⩾ ε] = Pϑ
[
(Tn(X)− g(ϑ))2 ⩾ ε2

]
⩽ 1

ε2
Eϑ
[
(Tn(X)− g(ϑ))2

]
=

Varϑ [Tn(X)] + [Eϑ (Tn(X))− g(ϑ)]2

ε2
n→∞→ 0 ⇒

lim
n→∞

Pϑ [|Tn(X)− g(ϑ)| ⩾ ε] = 0 ⇒ lim
n→∞

Pϑ [|Tn(X)− g(ϑ)| < ε] = 1.

iii. According to Slutsky’s theorem, we infer that:

Tn(X) =
1

rn
· rn [Tn(X)− g(ϑ)] + g(ϑ)

d→ 0 · Y + g(ϑ) = g(ϑ).

According to proposition 3.16, we conclude that Tn(X)
p→ g(ϑ).

Theorem 3.12. (Continuous Mapping Theorem) If Xn
a.s./p/d→ X and the function

g : R → R is continuous, then g (Xn)
a.s./p/d→ g(X).

Corollary 3.9. If Tn(X) is a (strongly) consistent estimator of ϑ and the function
g : Θ → R is continuous, then g (Tn(X)) is a (strongly) consistent estimator of the
parametric function g(ϑ).
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Proof. According to the continuous mapping theorem, we know that Tn(X)
a.s./p→ ϑ

implies that g (Tn(X))
a.s./p→ g(ϑ).

Theorem 3.13. (Delta Method) If rn (Xn − ϑ)
d→ Y , where limn→∞ rn = ∞, and

the function g : Θ → R is continuously differentiable with g′(ϑ) ̸= 0, then it follows
that rn [g (Xn)− g(ϑ)]

d→ g′(ϑ)Y .

Theorem 3.14∗. (Second-Order Delta Method) Suppose that rn (Xn − ϑ)
d→ Y ,

where limn→∞ rn = ∞. If the function g : Θ → R is 2 times continuously differ-
entiable with g′(ϑ) = 0 and g′′(ϑ) ̸= 0, then r2n [g (Xn)− g(ϑ)]

d→ 1
2g

′′(ϑ)Y 2.

Theorem 3.15. (Weak Law of Large Numbers) If (Xn)n⩾1 is a sequence of iid random
variables with E(X1) = µ ∈ R, then Xn

p→ µ.

Theorem 3.16. (Strong Law of Large Numbers) If (Xn)n⩾1 is a sequence of iid
random variables with E(X1) = µ ∈ R, then Xn

a.s.→ µ.

Corollary 3.10. The statistic Tn(X) = Xn is a strongly consistent estimator of the
parametric function g(ϑ) = Eϑ(X1).

Proof. The result follows directly from the strong law of large numbers.

Theorem 3.17. (Central Limit Theorem) If (Xn)n⩾1 is a sequence of iid random
variables with E(X1) = µ ∈ R and Var(X1) = σ2 ∈ (0,∞), then it follows that
√
n
(
Xn − µ

) d→ Y ∼ N
(
0, σ2

)
.

Lemma 3.2. If the random variable X has continuous CDF F (x;ϑ), then it holds
that U = F (X;ϑ) ∼ U(0, 1).

Proof. Since the CDF F (x;ϑ) is continuous, we deduce that it’s also invertible. For
u ∈ (0, 1), we calculate that:

FU (u) = P [F (X;ϑ) ⩽ u] = P
[
X ⩽ F−1(u;ϑ)

]
= F

(
F−1(u;ϑ);ϑ

)
= u.

Theorem 3.18. If the random variables U1, . . . , Un ∼ U(0, 1) are iid, then it follows
that nU(1)

d→ Y and n
[
1− U(n)

] d→ V , where Y, V ∼ Exp(1) are independent random
variables.

Corollary 3.11. If the random sample X1, . . . , Xn has continuous CDF F (x;ϑ), then
it follows that nF

[
X(1);ϑ

] d→ Y and n
[
1− F

(
X(n);ϑ

)] d→ V , where Y, V ∼ Exp(1)
are independent random variables.
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Proof. According to the previous lemma, we infer that Ui = F (Xi;ϑ) ∼ U(0, 1) for
i = 1, 2, . . . , n, which implies that U(1) = F

[
X(1);ϑ

]
and U(n) = F

[
X(n);ϑ

]
. Hence,

the desired result follows from direct application of the previous theorem.

Lemma 3.3. Let U ∼ U(0, 1). Then, the random variable X = F−1(U ;ϑ) has
continuous CDF F (x;ϑ).

Proof. We know that FU (u) = P(U ⩽ u) = u for u ∈ (0, 1). For x ∈ S, we calculate
that:

FX(x) = Pϑ(X ⩽ x) = Pϑ
[
F−1(U ;ϑ) ⩽ x

]
= Pϑ [F (x;ϑ) ⩾ U ] = FU (F (x;ϑ);ϑ) = F (x;ϑ).

Theorem 3.19∗. If the random variables U1, . . . , Un ∼ U(0, 1) are iid, then it follows
that:

√
n

[
median(U)− 1

2

]
d→ Y ∼ N (0, 1/4) .

Corollary 3.12∗. If the random sample X1, . . . , Xn has PDF f(x;ϑ), CDF F (x;ϑ)

and m = F−1 (1/2;ϑ) is the theoretical median of the distribution, then it follows
that:

√
n [median(X)−m]

d→ V ∼ N
(
0,

1

4f2(m;ϑ)

)
.

Proof. Let g(x) = F−1(x;ϑ). Since the CDF F (x;ϑ) is continuous, we infer that g
is continuously differentiable. First, we notice that g (1/2) = m. Then, we calculate
that:

x = F (g(x);ϑ) ⇒ g′(x)F ′ (g(x);ϑ)) = 1 ⇒

g′(x) =
1

f (g(x);ϑ))
⇒ g′ (1/2) =

1

f(m;ϑ)
̸= 0.

According to the previous lemma, it follows that the random variables X1, X2, . . . , Xn

and g(U1), g(U2), . . . , g(Un) have the same distribution, which implies that the ran-
dom variables median(X) and g (median(U)) also have the same distribution. By
applying the delta method on the asymptotic distribution of the previous theorem,
we conclude that:

√
n [median(X)−m]

d
=

√
n [g (median(U))− g (1/2)]

d→ g′ (1/2)Y =
1

f(m;ϑ)
Y ∼ N

(
0,

1

4f2(m;ϑ)

)
.
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Proposition 3.18∗. If Xn = (Xn1, . . . , Xns) and X = (X1, . . . , Xs), then it follows
that Xn

a.s./p→ X ⇔ Xnj
a.s./p→ Xj for j = 1, 2, . . . , s.

Theorem 3.20∗. (Cramér - Wold) If Xn = (Xn1, . . . , Xns) and X = (X1, . . . , Xs),
then it holds that Xn

d→ X ⇔
∑s

j=1 cjXnj
d→
∑s

j=1 cjXj ∀c = (c1, . . . , cs) ∈ Rs.

Definition 3.21∗. A random vector X ∈ Rs follows the (non-degenerate) multivariate
normal distribution with mean vector µ ∈ Rs and positive definite covariance matrix
Σ ∈ Rs×s, i.e. X ∼ Ns (µ,Σ), if it has the following PDF:

fX(x;µ,Σ) = (2π)−s/2 |Σ|−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rs.

Proposition 3.19∗. If X ∼ Ns(µ,Σ), A ∈ Rd×s and c ∈ Rd, then it follows that
AX + c ∼ Nd

(
Aµ+ c, AΣAT).

Theorem 3.21∗. (Multivariate Central Limit Theorem) If (Xn)n⩾1 is a sequence of
iid random vectors with mean vector E(X1) = µ ∈ Rs and positive definite covariance
matrix Var(X1) = Σ ∈ Rs×s, then it holds that

√
n
(
Xn − µ

) d→ Y ∼ Ns (0,Σ).

Theorem 3.22∗. (Multivariate Delta Method) Suppose that rn (Xn − ϑ)
d→ Y ∈ Rs,

where limn→∞ rn = ∞. If the function g : Θ → Rd is continuously differentiable with
Jacobian matrix Jg ∈ Rd×s and the matrix Jg(ϑ)Varϑ(Y )J T

g (ϑ) is positive definite,
then it follows that rn [g (Xn)− g(ϑ)]

d→ Jg(ϑ)Y .

Theorem 3.23∗. (Multivariate Second-Order Delta Method) Let rn (Xn − ϑ)
d→ Y ,

where limn→∞ rn = ∞. If the function g : Θ → R is 2 times continuously differentiable
with ∇T

ϑ g(ϑ)Varϑ(Y )∇ϑg(ϑ) = 0 and Hessian matrix Hg(ϑ) ∈ Rs×s, then it follows
that r2n [g (Xn)− g(ϑ)]

d→ 1
2Y

THg(ϑ)Y .

Note 3.22. To sum up, there is a multitude of available methods to show that a
statistic Tn(X) is a (strongly) consistent estimator of a parametric function g(ϑ):

i. The definitions of almost sure convergence and convergence in probability;

ii. Showing that Tn(X) is an (asymptotically) unbiased estimator of g(ϑ) with
limn→∞ Varϑ [Tn(X)] = 0;

iii. Combining the laws of large numbers with the continuous mapping theorem and
proposition 3.16;

iv. Showing that Tn(X) has an asymptotic distribution via a combination of the defi-
nition of convergence in distribution, Slutsky’s theorem, the continuous mapping
theorem, the delta method, the central limit theorem and corollary 3.11.

Example 3.32. Let X1, . . . , Xn ∼ N (µ, σ2) be a random sample. We want to find
(strongly) consistent estimators of σ2 and g(µ, σ2) = µ

σ . We also want to show that
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Xn−µ
Sn/

√
n

d→ Z ∼ N (0, 1). According to note 3.12 (page 38), we know that the sample
variance S2

n is an unbiased estimator of σ2, and it holds that Var
(
S2
n

)
= 2σ4

n−1 → 0 as
n→ ∞. According to proposition 3.17, it follows that S2

n is a consistent estimator of
σ2. Alternatively, we know that:

S2
n =

1

n− 1

(
n∑
i=1

X2
i − nX

2
n

)
=

n

n− 1

(
1

n

n∑
i=1

X2
i −X

2
n

)
.

According to the strong law of large numbers, we also know that:

Xn
a.s.→ µ,

1

n

n∑
i=1

X2
i

a.s.→ E
(
X2

1

)
= Var(X1) + [E(X1)]

2 = σ2 + µ2.

According to proposition 3.16, we infer that S2
n

a.s.→ 1 ·
[(
σ2 + µ2

)
− µ2

]
= σ2, i.e. S2

n

is a strongly consistent estimator of σ2. We also infer that Xn
Sn

is a strongly consistent
estimator of the parametric function g(µ, σ2) = µ

σ . According to the central limit
theorem, we know that

√
n
(
Xn − µ

) d→ Y ∼ N
(
0, σ2

)
. According to Slutsky’s

theorem, we conclude that:

Xn − µ

Sn/
√
n

d→ 1

σ
Y = Z ∼ N (0, 1).

Example 3.33. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We want to examine
whether the statistic Tn(X) = 1

Xn
is a (strongly) consistent estimator of λ and calcu-

late its asymptotic distribution. We know that
∑n

i=1Xi ∼ Gamma(n, λ). According
to example 3.24 (page 48), we also know that E [Tn(X)] = nλ

n−1 → λ as n → ∞, i.e.
Tn(X) is an asymptotically unbiased estimator of λ. Additionally, we calculate that:

E
[
T 2
n(X)

]
= n2

∫ ∞

0

1

x2
λn

(n− 1)!
xn−1e−λxdx =

n2λn

(n− 1)!

∫ ∞

0
xn−3e−λxdx

=
n2λn

(n− 1)!

(n− 3)!

λn−2
=

n2λ2

(n− 1)(n− 2)
,

Var [Tn(X)] =
n2λ2

(n− 1)(n− 2)
− n2λ2

(n− 1)2
=

n2λ2

(n− 2)(n− 1)2
n→∞→ 0.

According to proposition 3.17, the statistic Tn(X) is a consistent estimator of λ.
According to the strong law of large numbers, we know that Xn

a.s.→ E(X1) =
1
λ . Hence,

we infer that Tn(X) is a strongly consistent estimator of λ, according to proposition
3.16. Furthermore, we know that

√
n
(
Xn − 1

λ

) d→ Y ∼ N
(
0, 1

λ2

)
, according to the

central limit theorem. Since the function g(x) = 1
x is continuously differentiable on

Θ = (0,∞) with g′ (1/λ) = −λ2 ̸= 0, we conclude that:

√
n [Tn(X)− λ]

d→ g′ (1/λ)Y = −λ2Y ∼ N
(
0, λ2

)
,
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according to the delta method.

Example 3.34. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with k > 0,
known λ > 2, PDF f(x; k) = λkλ

xλ+1 and CDF F (x; k) = 1−
(
k
x

)λ for x ⩾ k. We want
to examine whether the statistic X(1) is a consistent estimator of k and calculate its
asymptotic distribution. First, we calculate that:

FX(1)
(x) = 1−

(
k

x

)nλ
, fX(1)

(x) =
nλknλ

xnλ+1
,

i.e. X(1) ∼ Pareto(k, nλ). Then, we calculate that:

E
[
X(1)

]
= nλknλ

∫ ∞

k

1

xnλ
dx =

nλknλ

nλ− 1

1

knλ−1
=

nλk

nλ− 1

n→∞→ k,

i.e. X(1) is an asymptotically unbiased estimator of k. Additionally, we calculate
that:

E
[
X2

(1)

]
= nλknλ

∫ ∞

k

1

xnλ−1
dx =

nλknλ

nλ− 2

1

knλ−2
=

nλk2

nλ− 2
,

Var
[
X(1)

]
=

nλk2

nλ− 2
− n2λ2k2

(nλ− 1)2
=

nλk2

(nλ− 1)2(nλ− 2)

n→∞→ 0.

According to proposition 3.17, the statistic X(1) is a consistent estimator of k. Ac-
cording to corollary 3.11, we know that:

nF
[
X(1); k

]
= n

[
1− kλ

Xλ
(1)

]
= −nkλ

[
1

Xλ
(1)

− 1

kλ

]
d→ Y ∼ Exp(1).

Since the function g(x) = x−1/λ is continuously differentiable on Θ = (0,∞) and it
holds that g′

(
k−λ

)
= − 1

λk
λ+1 ̸= 0, it follows that:

n
[
X(1) − k

] d→ −k−λg′
(
k−λ

)
Y =

k

λ
Y = V ∼ Exp (λ/k) ,

according to Slutsky’s theorem in conjunction with the delta method. Alternatively,
for x ∈ (0,∞), We calculate that:

P
[
n
(
X(1) − k

)
⩽ x

]
= FX(1)

(x
n
+ k
)
= 1−

(
k

x/n+ k

)nλ
= 1−

(
1 +

x/k

n

)−nλ
n→∞→ 1− e−λx/k,

which is the CDF of V ∼ Exp (λ/k), so we conclude that n
[
X(1) − k

] d→ V .

Example 3.35. Let X1, . . . , Xn ∼ Bernoulli(p) be a random sample. We want to
show that the statistic Tn(X) = min

{
Xn, 1−Xn

}
is a strongly consistent estimator

of g(p) = min{p, 1 − p} and calculate its asymptotic distribution. According to the
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strong law of large numbers, we know that Xn
a.s.→ E(X1) = p. Since the function

g(p) = min{p, 1 − p} is continuous on Θ = (0, 1), the statistic Tn(X) is a strongly
consistent estimator of g(p), according to the continuous mapping theorem. Further-
more, we know that

√
n
(
Xn − p

) d→ Y ∼ N (0, p(1− p)), according to the central
limit theorem. Since the function g(p) = min{p, 1− p} is continuously differentiable
for p ̸= 1

2 with |g′(p)| = 1, it follows that:

√
n [Tn(X)−min{p, 1− p}] d→ g′ (p)Y ∼ N (0, p(1− p)) ,

according to the delta method. For p = 1
2 , we observe that:

Tn(X)−min{p, 1− p} = min

{
Xn −

1

2
,
1

2
−Xn

}
= −

∣∣∣∣Xn −
1

2

∣∣∣∣ .
Since the function g(x) = −|x| is continuous, it follows that:

√
n [Tn(X)−min{p, 1− p}] = −

√
n

∣∣∣∣Xn −
1

2

∣∣∣∣ d→ −|Y |,

where Y ∼ N
(
0, 14
)
, according to the continuous mapping theorem.

3.11 Maximum Likelihood Estimation

Definition 3.22. The joint PMF or PDF of the random variables X1, . . . , Xn re-
garded as a function of ϑ is called the likelihood function of the sample X for ϑ and
is denoted by L(ϑ | x) = f(x;ϑ).

Note 3.23. If X1, . . . , Xn are independent, then L(ϑ | x) =
∏n
i=1 f(xi;ϑ).

Interpretation: The likelihood function expresses how plausible it is to have ob-
served the sample x as a function of the parameter ϑ. Therefore, a "reasonable"
estimator of ϑ results from maximizing the likelihood function with respect to ϑ. In
this manner, we estimate the unknown parameter by the value of ϑ for which it is
most likely to have observed the sample.

Definition 3.23. The statistic ϑ̂(X) for which the likelihood function is maximized,
i.e. ϑ̂(X) = argmaxϑ∈Θ L(ϑ | X), is called the maximum likelihood estimator (MLE)
of ϑ.

Note 3.24. i. For an unknown parameter ϑ there may not exist any MLE, there
may exist a unique MLE, or there may exist multiple MLEs, i.e. the likelihood
function might have multiple global maxima.

ii. Since the function g(x) = log x is strictly increasing on (0,∞), we infer that
the maxima of the log-likelihood function ℓ(ϑ | x) = logL(ϑ | x) coincide with
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the maxima of the likelihood function. For reasons of computational ease and
numerical stability (the products turn into sums), maximizing the log-likelihood
function is usually preferred.

iii. If the log-likelihood function ℓ(ϑ | x) is partially differentiable on an open set
Θ0 ⊆ Θ, then candidate global maxima of ℓ(ϑ | x) are given by solving the
system of equations ∂ℓ(ϑ|x)

∂ϑj
= 0 for j = 1, 2, . . . , s.

Proposition 3.20. If the statistic T (X) is sufficient for ϑ and ϑ̂(X) is the unique
MLE of ϑ, then it holds that ϑ̂(X) = ψ (T ) for some function ψ.

Proof. According to the Fisher - Neyman factorization criterion, we know that:

L(ϑ | x) = f(x;ϑ) = g (T (x);ϑ)h(x).

Since the function h(x) does not depend on the value of ϑ, we deduce that the unique
MLE ϑ̂(X) of ϑ is the value of ϑ which maximizes the function g (T (x);ϑ). Therefore,
we conclude that the MLE ϑ̂(X) of ϑ depends on the sample X through the sufficient
statistic T (X) for ϑ.

Proposition 3.21. Let X be a random sample from a distribution which satisfies
the regularity conditions of the Cramér - Rao inequality. If the Fisher information
IX(ϑ) is differentiable on Θ and the statistic T (X) is an efficient estimator of ϑ, then
T (X) is also the MLE of ϑ.

Proof. According to proposition 3.8 (page 54) for the parametric function g(ϑ) = ϑ,
we know that SX(ϑ) = IX(ϑ) [T (X)− ϑ] ∀ϑ ∈ Θ. Since the score function is the
derivative of the log-likelihood function with respect to ϑ, setting it equal to 0 and
solving the resulting equation should yield the MLE of ϑ. Since IX(ϑ) ∈ (0,∞), it
follows that ϑ̂(X) = T (X). Next, we calculate that:

∂

∂ϑ
SX(ϑ) = I ′

X(ϑ) [T (X)− ϑ]− IX(ϑ),
∂

∂ϑ
SX(ϑ̂) = −IX(ϑ̂) < 0.

Thus, the efficient estimator T (X) of ϑ is also the MLE of ϑ.

Note 3.25. The converse is generally not true, i.e. the MLE of ϑ isn’t necessarily
an efficient estimator of ϑ. In fact, there are cases where the MLE of ϑ is not even
an unbiased estimator of ϑ.

Proposition 3.22. (Invariance Property) If the statistic ϑ̂(X) is the MLE of ϑ, then
g(ϑ̂) is the MLE of the parametric function g(ϑ), i.e. it holds that ĝ(ϑ) = g(ϑ̂).
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Proof. Assume that the function g is injective and let:

L∗(η | x) = L
(
g−1(η) | x

)
= L(ϑ | x).

Then, we observe that:

L∗
(
g(ϑ̂) | x

)
= L

(
g−1(g(ϑ̂)) | x

)
= L

(
ϑ̂ | x

)
.

Therefore, we conclude that η̂ = ĝ(ϑ) = g(ϑ̂). The proof for the general case requires
the notion of the induced likelihood function and can be found in Casella and Berger,
Section 7.2.

Example 3.36. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We calculate that:

ℓ(λ | x) = logL(λ | x) = n log λ− λ
n∑
i=1

xi,

∂ℓ(λ | x)
∂λ

=
n

λ
−

n∑
i=1

xi = 0 ⇒ λ̂(x) =
1

x
,

∂2ℓ(λ | x)
∂λ2

= − n

λ2
< 0, ∀λ > 0,

i.e. the function ℓ(λ | x) is strictly concave on Θ = (0,∞). Therefore, the statistic
λ̂(X) = 1

X
is the MLE of λ.

Example 3.37. Let X1, . . . , Xn ∼ Bin(N, p) be a random sample with known N .
We calculate that:

ℓ(p | x) =
n∑
i=1

log

(
N

xi

)
+ log p

n∑
i=1

xi + log(1− p)

(
nN −

n∑
i=1

xi

)
,

∂ℓ(p | x)
∂p

=
1

p

n∑
i=1

xi −
1

1− p

(
nN −

n∑
i=1

xi

)
= 0 ⇒

(1− p̂)

n∑
i=1

xi = p̂

(
nN −

n∑
i=1

xi

)
⇒ p̂(x) =

1

nN

n∑
i=1

xi =
1

N
x,

∂2ℓ(p | x)
∂p2

= − 1

p2

n∑
i=1

xi −
1

(1− p)2

(
nN −

n∑
i=1

xi

)
< 0, ∀p ∈ (0, 1),

i.e. the function ℓ(p | x) is strictly concave on Θ = (0, 1). Therefore, the statistic
p̂(X) = 1

NX is the MLE of p. If x1 = · · · = xn = 0, we infer that L(p | x) = (1−p)nN ,
i.e. the likelihood function is strictly decreasing on Θ = (0, 1), so the MLE of p doesn’t
exist. If x1 = · · · = xn = N , we observe that L(p | x) = pnN , i.e. the likelihood
function is strictly increasing on Θ = (0, 1), so the MLE of p doesn’t exist.

Example 3.38. Let X1, . . . , Xn ∼ N (µ, ϑ) be a random sample with known µ. We
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calculate that:

ℓ(ϑ | x) = −n
2
log(2π)− n

2
log ϑ− 1

2ϑ

n∑
i=1

(xi − µ)2,

∂ℓ(ϑ | x)
∂ϑ

= − n

2ϑ
+

1

2ϑ2

n∑
i=1

(xi − µ)2 = 0 ⇒ ϑ̂(x) =
1

n

n∑
i=1

(xi − µ)2,

∂2ℓ(ϑ | x)
∂ϑ2

=
n

2ϑ2
− 1

ϑ3

n∑
i=1

(xi − µ)2 = − n

2ϑ2

[
2

nϑ

n∑
i=1

(xi − µ)2 − 1

]
,

∂2ℓ(ϑ̂ | x)
∂ϑ2

= − n

2ϑ̂2
< 0,

i.e. the function ℓ(ϑ | x) has a maximum at ϑ̂. Next, we calculate that:

lim
ϑ→∞

L (ϑ | x) = lim
ϑ→∞

(2πϑ)−n/2 exp

{
− 1

2ϑ

n∑
i=1

(xi − µ)2

}
= 0,

lim
ϑ→0+

L (ϑ | x) = lim
ϑ→0+

(2πϑ)−n/2 exp

{
− 1

2ϑ

n∑
i=1

(xi − µ)2

}
= 0.

Therefore, the statistic ϑ̂(X) = 1
n

∑n
i=1(Xi − µ)2 is the MLE of ϑ. In the case where

x1 = · · · = xn = µ, we observe that L(ϑ | x) = (2πϑ)−n/2, i.e. the likelihood function
is strictly decreasing on Θ = (0,∞) and doesn’t have any maxima. However, it holds
that P(X1 = · · · = Xn = µ) = 0, so the MLE of ϑ exists with probability 1.

Example 3.39. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. We calculate that:

L(ϑ | x) = 1

ϑn

n∏
i=1

1[0,ϑ](xi) =
1

ϑn
1[0,ϑ]

(
x(n)

)
=

ϑ−n, ϑ ⩾ x(n)

0, ϑ < x(n)

.

For ϑ ⩾ x(n), the likelihood function is strictly decreasing, so it has a unique global
maximum ϑ̂(X) = X(n).

Example 3.40. Let X1, . . . , Xn ∼ U(2ϑ, 3ϑ) be a random sample with ϑ > 0. We
calculate that:

L(ϑ | x) = 1

ϑn
1[2ϑ,3ϑ]

(
x(1)

)
1[2ϑ,3ϑ]

(
x(n)

)
=

1

ϑn
1[2ϑ,∞)

(
x(1)

)
1(−∞,3ϑ]

(
x(n)

)
=

ϑ−n, 2ϑ ⩽ x(1) and 3ϑ ⩾ x(n)

0, otherwise
=

ϑ−n,
1
3x(n) ⩽ ϑ ⩽ 1

2x(1)

0, otherwise
.

For ϑ ∈
[
1
3x(n),

1
2x(1)

]
, the likelihood function is strictly decreasing, so it has a unique

global maximum ϑ̂(X) = 1
3X(n).
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Example 3.41. Let X1, . . . , Xn ∼ U(ϑ, ϑ+ 1) be a random sample with ϑ ∈ R. We
calculate that:

L(ϑ | x) = 1[ϑ,ϑ+1]

(
x(1)

)
1[ϑ,ϑ+1]

(
x(n)

)
= 1[ϑ,∞)

(
x(1)

)
1(−∞,ϑ+1]

(
x(n)

)
=

1, ϑ ⩽ x(1) and ϑ ⩾ x(n) − 1

0, otherwise
=

1, x(n) − 1 ⩽ ϑ ⩽ x(1)

0, otherwise
.

For ϑ ∈
[
x(n) − 1, x(1)

]
, the likelihood function is constant, so it has infinitely many

global maxima ϑ̂(X) ∈
[
X(n) − 1, X(1)

]
.

Example 3.42. Let X1, . . . , Xn ∼ U(ϑ1, ϑ2) be a random sample. We calculate that:

L(ϑ1, ϑ2 | x) =
1

(ϑ2 − ϑ1)n
1[ϑ1,∞)

(
x(1)

)
1(−∞,ϑ2]

(
x(n)

)
=

(ϑ2 − ϑ1)
−n , ϑ1 ⩽ x(1) and ϑ2 ⩾ x(n)

0, otherwise
.

For (ϑ1, ϑ2) ∈
(
−∞, x(1)

]
×
[
x(n),∞

)
, the likelihood function is strictly increasing

with respect to ϑ1 and strictly decreasing with respect to ϑ2, so it has a unique global
maximum ϑ̂(X) =

(
X(1), X(n)

)
.

Note 3.26. In the case of a parameter vector ϑ ∈ R2, we may endeavor to perform
successive maximization of the likelihood function with respect to each unknown
parameter separately, that is:

max
(ϑ1,ϑ2)∈Θ

L(ϑ1, ϑ2 | x) = max
ϑ2∈Θ2

{
max
ϑ1∈Θ1

L(ϑ1, ϑ2 | x)
}
.

This method will only lead to the solution of the joint maximization problem if the
maximization with respect to ϑ1 leads to a global maximum which doesn’t depend
on the value of ϑ2.

Example 3.43. Let X1, . . . , Xn be a random sample with f(x;λ, k) = λe−λ(x−k) for
λ > 0, k ∈ R and x ⩾ k. We calculate that:

L(λ, k | x) = λn exp

{
−λ

n∑
i=1

xi + nλk

}
1[k,∞)

(
x(1)

)
.

First, we fix λ and maximize with respect to k. For k ⩽ x(1), the likelihood function is
strictly increasing with respect to k, so it has a unique global maximum k̂(X) = X(1).
Now, we maximize ℓ

(
λ, x(1) | x

)
with respect to λ. We calculate that:

ℓ
(
λ, x(1) | x

)
= n log λ− λ

n∑
i=1

xi + nλx(1),
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∂ℓ
(
λ, x(1) | x

)
∂λ

=
n

λ
−

n∑
i=1

xi + nx(1) = 0 ⇒ λ̂(x) =
1

x− x(1)
,

∂2ℓ
(
λ, x(1) | x

)
∂λ2

= − n

λ2
< 0, ∀λ > 0,

i.e. the function ℓ
(
λ, x(1) | x

)
is strictly concave on (0,∞). Therefore, the statistic

ϑ̂(X) =

(
1

X−X(1)
, X(1)

)
is the MLE of ϑ = (λ, k). If x1 = · · · = xn, we observe that

L
(
λ, x(1) | x

)
= λn, i.e. the likelihood function is strictly increasing on (0,∞) and

it doesn’t have any maxima. However, it holds that P(X1 = · · · = Xn) = 0, so the
MLE of λ exists and is unique with probability 1.

Example 3.44. Let X1, . . . , Xn ∼ N (ϑ1, ϑ2) be a random sample. We want to
calculate the MLE of the parametric function g(ϑ) = ϑ1√

ϑ2
and compare the MSE of

the MLE of ϑ2 against the MSE of the UMVUE of ϑ2. We calculate that:

ℓ(ϑ1, ϑ2 | x) = −n
2
log(2π)− n

2
log ϑ2 −

1

2ϑ2

n∑
i=1

(xi − ϑ1)
2.

First, we fix ϑ2 and maximize with respect to ϑ1:

∂ℓ(ϑ1, ϑ2 | x)
∂ϑ1

=
1

ϑ2

n∑
i=1

(xi − ϑ1) = 0 ⇒ ϑ̂1(x) = x,

∂2ℓ(ϑ1, ϑ2 | x)
∂ϑ21

= − n

ϑ2
< 0, ∀ϑ1 ∈ R,

i.e. the function ℓ(ϑ1, ϑ2 | x) is strictly concave for fixed ϑ2 and has a unique global
maximum ϑ̂1. Now, we maximize ℓ(x, ϑ2 | x) with respect to ϑ2. We calculate that:

∂ℓ(x, ϑ2 | x)
∂ϑ2

= − n

2ϑ2
+

1

2ϑ22

n∑
i=1

(xi − x)2 = 0 ⇒ ϑ̂2(x) =
1

n

n∑
i=1

(xi − x)2,

∂2ℓ(x, ϑ2 | x)
∂ϑ22

=
n

2ϑ22
− 1

ϑ32

n∑
i=1

(xi − x)2 = − n

2ϑ22

[
2

nϑ2

n∑
i=1

(xi − x)2 − 1

]
,

∂2ℓ(ϑ̂1, ϑ̂2 | x)
∂ϑ22

= − n

2ϑ̂22
< 0,

i.e. the function ℓ(x, ϑ2 | x) has a maximum at ϑ̂2. Additionally, we calculate that:

lim
ϑ2→∞

L
(
ϑ̂1, ϑ2 | x

)
= lim

ϑ2→∞
(2πϑ2)

−n/2 exp

{
− 1

2ϑ2

n∑
i=1

(xi − x)2

}
= 0,

lim
ϑ2→0+

L
(
ϑ̂1, ϑ2 | x

)
= lim

ϑ2→0+
(2πϑ2)

−n/2 exp

{
− 1

2ϑ2

n∑
i=1

(xi − x)2

}
= 0.
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Therefore, the statistic ϑ̂(X) =
(
X, n−1

n S2
)

is the MLE of ϑ = (ϑ1, ϑ2). According to
the invariance property, the statistic g(ϑ̂) =

√
n
n−1

X
S is the MLE of g(ϑ) = ϑ1√

ϑ2
. To

understand exactly how important this property of the MLE is, it suffices to consider
how arduous the procedure to calculate the UMVUE of g(ϑ) would be. According to
example 3.26 (page 49), the sample variance S2 is the UMVUE of ϑ2. According to
note 3.12 (page 38), we know that MSEϑ2

(
S2
)
= Var

(
S2
)
= 2

n−1ϑ
2
2. Additionally,

we calculate that:

E
(
ϑ̂2

)
= E

(
n− 1

n
S2

)
=
n− 1

n
ϑ2, biasϑ2

(
ϑ̂2

)
= E

(
ϑ̂2

)
− ϑ2 = − 1

n
ϑ2,

Var
(
ϑ̂2

)
= Var

(
n− 1

n
S2

)
=

(n− 1)2

n2
2

n− 1
ϑ22 =

2(n− 1)

n2
ϑ22,

MSEϑ2
(
ϑ̂2

)
= Var

(
ϑ̂2

)
+ bias2ϑ2

(
ϑ̂2

)
=

2n− 1

n2
ϑ22.

We compare the MSEs of the 2 estimators as follows:

MSEϑ2
(
ϑ̂2

)
< MSEϑ2

(
S2
)

⇔ 2n− 1

n2
<

2

n− 1
⇔ −3n+ 1 < 0.

Therefore, the biased MLE of ϑ2 has a smaller MSE than the UMVUE of ϑ2.

Theorem 3.24∗. Let X be a random sample with joint PMF or PDF f(x;ϑ) for
ϑ ∈ Θ ⊆ R and x ∈ S. Suppose that the following regularity conditions are satisfied:

I. The parameter space Θ is an open subset of R.

II. The support S = {x ∈ Rn : f(x;ϑ) > 0} doesn’t depend on the value of ϑ.

III. ∂
∂ϑf(x;ϑ) <∞ ∀x ∈ S and ∀ϑ ∈ Θ.

IV. The likelihood function L(ϑ | X) has a unique global maximum ϑ̂n(X) ∀n ∈ N.

V. The parameter ϑ is identifiable, i.e. the likelihood function is injective with
respect to ϑ.

Then, the MLE ϑ̂n(X) of ϑ is a consistent estimator of ϑ.

Theorem 3.25∗. Suppose that the following additional regularity conditions also hold:

VI. ∂3

∂ϑ3
f(x;ϑ) <∞ ∀x ∈ S and ∀ϑ ∈ Θ.

VII.
∫
S

∂3

∂ϑ3
f(x;ϑ)dx = ∂3

∂ϑ3

∫
S f(x;ϑ)dx = 0 ∀ϑ ∈ Θ.

VIII. IX(ϑ) ∈ (0,∞) ∀ϑ ∈ Θ.

IX. For all ϑ ∈ Θ, there exist δϑ > 0 and a function M(x, ϑ) with Eϑ [M(X,ϑ)] <∞
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such that:∣∣∣∣ ∂3∂ϑ3∗ log f(x;ϑ∗)
∣∣∣∣ ⩽M(x, ϑ), ∀x ∈ S, ∀ϑ∗ ∈ [ϑ− δϑ, ϑ+ δϑ] .

Then, it holds that
√
n
(
ϑ̂n − ϑ

)
d→ Y ∼ N

(
0, I−1

X1
(ϑ)
)

, i.e. the MLE ϑ̂n(X) of ϑ is
an asymptotically efficient estimator of ϑ.

Note 3.27∗. Suppose that the distribution of X belongs to the one-parameter multi-
variate exponential family with f(x;ϑ) = h(x)eQ(ϑ)T (x)−A(ϑ). If the parameter space
Θ is an open subset of R and the function Q : Θ → R is continuously differentiable
with Q′(ϑ) ̸= 0 ∀ϑ ∈ Θ, then the regularity conditions I-III and VI-VIII are satisfied,
so it remains to check the validity of the regularity conditions IV, V and IX.

Note 3.28. We observe that the MLE of a parameter has many "good" properties
under certain conditions, especially for large samples. Indicatively, we mention that
it’s asymptotically unbiased, asymptotically efficient, consistent, a function of the
sufficient statistic and possesses the invariance property, in contrast with the UMVUE
of the unknown parameter. In table 3.4 we summarize the MLEs of the parameters
of some widely used distributions.

Bernoulli(p)
X

Poisson(λ)
Bin(N, p) with known N X/N

Exp(λ) 1/X

Gamma(k, λ) with known k k/X

Beta(ϑ, 1) −n/
∑n

i=1 logXi

Beta(1, ϑ) −n/
∑n

i=1 log(1−Xi)

N
(
µ, σ2

)
with known µ

∑n
i=1(Xi − µ)2/n

N
(
µ, σ2

) (
X, (n− 1)S2/n

)
U(ϑ1, ϑ2)

(
X(1), X(n)

)
Table 3.4: Notable Maximum Likelihood Estimators

3.12 Method of Moments Estimators

Definition 3.24. Let X be a sample from a distribution with unknown parameter
ϑ. For k = 1, 2, . . . , we define the following quantities:

i. Theoretical (raw) moment of order k: µk = Eϑ(Xk
1 ).

ii. Sample (raw) moment of order k: Mk =
1
n

∑n
i=1X

k
i .

Additionally, for k = 2, 3, . . . we define:
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iii. Theoretical central moment of order k: µ∗k = Eϑ
[
(X1 − µ1)

k
]
.

iv. Sample central moment of order k: M∗
k = 1

n

∑n
i=1 (Xi − µ1)

k.

Method of Moments: According to the strong law of large numbers, we know that:

Mk =
1

n

n∑
i=1

Xk
i

a.s.→ Eϑ
(
Xk

1

)
= µk,

M∗
k =

1

n

n∑
i=1

(Xi − µ1)
k a.s.→ Eϑ

[
(X1 − µ1)

k
]
= µ∗k.

Considering any of the equations Mk = µk and M∗
k = µ∗k, in order to obtain a system

of a total of s equations which we can solve for the unknown parameter ϑ ∈ Θ ⊆ Rs,
we end up with a method of moments estimator (MOME) ϑ̃(X) of ϑ. The MOME is
obviously not unique, since it depends on the choice of the system of equations.

Note 3.29. We construct a system of equations starting from the lower order mo-
ments, which are theoretically easier to compute. We usually work with the central
moments, since it holds that µ∗2 = Varϑ(X1), which is more readily known than
µ2 = Eϑ

(
X2

1

)
. If the theoretical first order moment µ1 in M∗

k isn’t known, then it’s
substituted by the corresponding sample moment M1 = X. If the moments µk and µ∗k
don’t depend on the value of ϑ for some k, then we skip the corresponding equations
and move on to the higher order moments.

Example 3.45. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We equate the first
order moments:

µ1 =M1 ⇒ 1

λ
= X ⇒ λ̃(X) =

1

X
.

We observe that the MOME of λ happens to be the same as the MLE of λ.

Example 3.46. Let X1, . . . , Xn ∼ N (µ, ϑ) be a random sample with known µ. We
observe that the first order theoretical moment µ1 = µ doesn’t depend on the value
of ϑ, so we skip it. We equate the second order central moments:

µ∗2 =M∗
2 ⇒ Var(X1) =

1

n

n∑
i=1

(Xi − µ1)
2 ⇒ ϑ̃(X) =

1

n

n∑
i=1

(Xi − µ)2.

We observe that the MOME of ϑ happens to be the same as the MLE of ϑ.

Example 3.47. Let X1, . . . , Xn ∼ N (ϑ1, ϑ2) be a random sample. We equate the
first order moments and the second order central moments:

µ1 =M1 ⇒ E(X1) =
1

n

n∑
i=1

Xi ⇒ ϑ̃1(X) = X,
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µ∗2 =M∗
2 ⇒ Var(X1) =

1

n

n∑
i=1

(Xi − µ1)
2 ⇒ ϑ̃2(X) =

1

n

n∑
i=1

(
Xi −X

)2
.

We observe that the MOME of ϑ happens to be the same as the MLE of ϑ.

Example 3.48. Let X1, . . . , Xn ∼ Gamma(k, λ) be a random sample. We equate
the first order moments and the second order central moments:

µ1 =M1 ⇒ E(X1) =
1

n

n∑
i=1

Xi ⇒ k

λ
= X,

µ∗2 =M∗
2 ⇒ Var(X1) =

1

n

n∑
i=1

(Xi − µ1)
2 ⇒ k

λ2
=

1

n

n∑
i=1

(
Xi −X

)2 ⇒

X

λ
=
n− 1

n
S2 ⇒ λ̃(X) =

nX

(n− 1)S2
⇒ k̃(X) = Xλ̃(X) =

nX
2

(n− 1)S2
.

In contrast with the MLE of ϑ = (k, λ), which doesn’t have a closed form solutions
and may only be calculated numerically, we observe that the MOME of ϑ can be
calculated fairly easily. However, we also observe that it’s not a function of the
sufficient statistic T (X) = (

∑n
i=1Xi,

∑n
i=1 logXi) for ϑ.

Example 3.49. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. We equate the first
order moments:

µ1 =M1 ⇒ ϑ

2
= X ⇒ ϑ̃(X) = 2X.

We observe that the MOME of ϑ isn’t a function of the sufficient statistic T (X) = X(n)

for ϑ, since MOMEs are always functions of the sample moments.

Example 3.50. Let X1, . . . , Xn ∼ U(−ϑ, ϑ) be a random sample with ϑ > 0. We
observe that the first order theoretical moment µ1 = 0 doesn’t depend on the value
of ϑ, so we skip it. We calculate that:

E
(
X2

1

)
=

∫ ϑ

−ϑ

x2

2ϑ
dx =

ϑ2

3
.

We equate the second order raw moments:

µ2 =M2 ⇒ ϑ2

3
=

1

n

n∑
i=1

X2
i ⇒ ϑ̃(X) =

√
3M2(X).

Example 3.51. Let X1, . . . , Xn ∼ U(ϑ1, ϑ2) be a random sample. We equate the
first order moments and the second order central moments:

µ1 =M1 ⇒ E(X1) =
1

n

n∑
i=1

Xi ⇒ ϑ1 + ϑ2
2

= X ⇒ ϑ1 + ϑ2 = 2X,
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µ∗2 =M∗
2 ⇒ Var(X1) =

1

n

n∑
i=1

(Xi − µ1)
2 ⇒

(ϑ2 − ϑ1)
2

12
=

1

n

n∑
i=1

(
Xi −X

)2 ⇒ ϑ2 − ϑ1 = 2S

√
3(n− 1)

n
⇒

ϑ̃1(X) = X − S

√
3(n− 1)

n
, ϑ̃2(X) = X + S

√
3(n− 1)

n
.

Example 3.52. Let X1, . . . , Xn be a random sample with f(x;λ, k) = λe−λ(x−k) for
λ > 0, k ∈ R and x ⩾ k. Let Yi = Xi − k for i = 1, 2, . . . , n. For y > 0, we calculate
that:

FY1(y) = P(X1 − k ⩽ y) = F (y + k;λ, k), fY1(y) = f(y + k;λ, k) = λe−λy,

i.e. Yi ∼ Exp(λ) for i = 1, 2, . . . , n. Therefore, we infer that:

E(X1) = E(Y1) + k =
1

λ
+ k, Var(X1) = Var(Y1) =

1

λ2
.

We equate the first order moments and the second order central moments:

µ1 =M1 ⇒ E(X1) =
1

n

n∑
i=1

Xi ⇒ 1

λ
+ k = X ⇒ k = X − 1

λ
,

µ∗2 =M∗
2 ⇒ Var(X1) =

1

n

n∑
i=1

(Xi − µ1)
2 ⇒ 1

λ2
=

1

n

n∑
i=1

(
Xi −X

)2 ⇒

λ̃(X) =
1

S

√
n

n− 1
⇒ k̃(X) = X − S

√
n− 1

n
.

Example 3.53. Let X1, . . . , Xn ∼ Bin(N, p) be a random sample. We equate the
first order moments and the second order central moments:

µ1 =M1 ⇒ E(X1) =
1

n

n∑
i=1

Xi ⇒ Np = X ⇒ N =
X

p
,

µ∗2 =M∗
2 ⇒ Var(X1) =

1

n

n∑
i=1

(Xi − µ1)
2 ⇒

Np(1− p) =
1

n

n∑
i=1

(
Xi −X

)2 ⇒ p̃(X) = 1− n− 1

nX
S2 ⇒

Ñ(X) =
nX

2

nX − (n− 1)S2
.

For the statistic (Ñ , p̃) to constitute an estimator of (N, p), it needs to take values on
the parameter space Θ = N× (0, 1) and to agree with the support of the distribution.
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For this reason, we set forth the following restrictions:

• (n− 1)S2 < nX which implies that p̃(X) ∈ (0, 1);

• Ñ(X) ∈ N and Ñ(X) ⩾ X(n) which implies that:

Ñ(X) = max

{⌊
nX

2

nX − (n− 1)S2

⌋
, X(n)

}
.

Note 3.30. Even though MOMEs are generally easier to calculate than estimators of
other kinds, they lack certain "good" properties. For example, they’re not necessarily
functions of some sufficient statistic and they don’t necessarily take values on the
parameter space.



Chapter 4

Confidence Intervals

4.1 Introduction

For a given sample x from a distribution with unknown parameter ϑ, we have thus
far studied how to calculate a point estimate of ϑ like the MLE ϑ̂(x), the UMVUE δ(x),
the efficient estimator T (x) or the MOME ϑ̃(x). These values constitute some "good"
estimates of the true value of ϑ, according to the criteria set forth in the previous
chapter. However, the mere calculation of a point estimate of ϑ doesn’t provide us
with any information on the uncertainty we have about our point estimate, i.e. how
far away the true value of ϑ could lie from the point estimate we calculated based
on our sample. Therefore, we arrive at the idea for the construction of an interval
around our point estimate within which the true value of ϑ lies with some prespecified
level of "confidence".

Definition 4.1. For given α ∈ (0, 1), we consider a random interval of the form
Ig(ϑ);1−α(X) = [L(X), U(X)] such that:

inf
ϑ∈Θ

Pϑ [L(X) ⩽ g(ϑ), U(X) ⩾ g(ϑ)] = inf
ϑ∈Θ

Pϑ [L(X) ⩽ g(ϑ) ⩽ U(X)] = 1− α,

which is called a 100(1 − α)% confidence interval (CI) for the parametric function
g(ϑ). The quantity 1− α is called the confidence level of the CI.

Interpretation: Assume that we let α = 0.05, collect a sample x and construct a
95% CI Iϑ;0.95(x) = [0.9, 1.2] for ϑ based on it. According to the previous definition,
one could think that the true value of the unknown parameter ϑ lies inside the interval
[0.9, 1.2] with 95% probability. However, this interpretation of the CI is incorrect.
In frequentist statistics, the parameter ϑ is considered to be an unknown constant,
so it will either lie or not lie inside the interval [0.9, 1.2]. Since ϑ is not a random
variable, assigning a probability to the event that 0.9 ⩽ ϑ ⩽ 1.2 is meaningless. Some

83
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correct interpretations of a 95% CI for ϑ are detailed below.

If we repeated the sample collection process K many times and repeated the
calculation of the 95% CI for ϑ for each of these samples xk, then 95% of these
intervals would contain the true value of ϑ. In other words, the interval varies across
different repetitions, since it depends on the observed sample, and not the unknown
parameter, which always remains constant. This interpretation of CIs arises from the
strong law of large numbers as follows:

1

K

K∑
k=1

1[L(xk),U(xk)](ϑ)
a.s.→ Eϑ

[
1[L(X),U(X)](ϑ)

]
= Pϑ [L(X) ⩽ ϑ ⩽ U(X)] ,

where 1
K

∑K
k=1 1[L(xk),U(xk)](ϑ) is precisely the percentage of the computed CIs which

contain the true value of ϑ. We observe that 5% of the computed CIs wouldn’t contain
the true value of ϑ by construction.

There is 95% probability that a CI calculated from a sample collected in the
future will contain the true value of ϑ. Note that this probabilistic interpretation still
concerns the CI and not the unknown parameter ϑ, which remains constant. Since we
haven’t yet observed the sample based on which we’ll construct the CI, we can assume
that it’s random. Therefore, the CI which we’ll construct based on it is also going to
be random, and we can assign the previously stated probabilistic interpretation to it.

4.2 Pivotal Quantity Method

Definition 4.2. A random variable Q (X, g(ϑ)) is called a pivotal quantity (or pivot)
for the parametric function g(ϑ) if it depends on the value of g(ϑ) but its distribution
doesn’t depend on the value of ϑ.

Note 4.1. We observe that the pivot Q doesn’t constitute a statistic, since it depends
on the value of ϑ. The pivotal quantity method aims at the construction of CIs for
which the probability Pϑ [L(X) ⩽ g(ϑ) ⩽ U(X)] doesn’t depend on the value of ϑ.
Therefore, it follows that:

Pϑ [L(X) ⩽ g(ϑ) ⩽ U(X)] = 1− α, ∀ϑ ∈ Θ.

Pivotal Quantity Method → We generally heed the following steps:

1. We determine a "good" estimator T (X) or a sufficient statistic T (X) for ϑ.

2. We determine the distribution T (X).

3. We determine a pivotal quantity Q (X, g(ϑ)). The method of determining a
suitable pivot heavily depends on the distribution of T (X).
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4. We determine constants c1 and c2 such that P(c1 ⩽ Q ⩽ c2) = 1− α.

5. We solve the inequality c1 ⩽ Q ⩽ c2 with respect to g(ϑ) and arrive at an
inequality of the form L(X) ⩽ g(ϑ) ⩽ U(X). The interval [L(X), U(X)] is a
100(1− α)% CI for the parametric function g(ϑ).

Definition 4.3. If Z ∼ N (0, 1) and X ∼ χ2
ν are independent random variables, then

we define:
T =

Z√
X/ν

∼ tν .

We say that the random variable T follows Student’s t distribution with ν degrees of
freedom.

Definition 4.4. If X ∼ χ2
ν1 and Y ∼ χ2

ν2 are independent random variables, then we
define:

F =
X/ν1
Y/ν2

∼ Fν1,ν2 .

We say that the random variable F follows Snedecor’s F distribution with ν1 and ν2

degrees of freedom.

Proposition 4.1. i. If Xn ∼ tn, then Xn
d→ Z ∼ N (0, 1).

ii. If T ∼ tν , then T 2 ∼ F1,ν .

iii. If F ∼ Fν1,ν2 , then F−1 ∼ Fν2,ν1 .

Proof. i. Let Y ∼ χ2
n be independent of Z ∼ N (0, 1). Then, there exist independent

random variables Y1, Y2, . . . , Yn ∼ χ2
1 such that Y and

∑n
i=1 Yi have the same distri-

bution. Since E(Y1) = 1, it follows that Y p→ 1, according to the weak law of large
numbers. Therefore, we conclude that:

Xn
d
=

Z√
Y/n

d
=

Z√
Y

d→ Z ∼ N (0, 1),

according to the continuous mapping theorem and Slutsky’s theorem.

ii. Consider the independent random variables Z ∼ N (0, 1) and X ∼ χ2
ν . Then,

the random variables T and Z√
X/ν

have the same distribution. Since Z2 ∼ χ2
1, it

follows that:
T 2 d

=
Z2

X/ν
∼ F1,ν .

iii. Consider the independent random variables X ∼ χ2
ν1 and Y ∼ χ2

ν2 . Then,
the random variables F and X/ν1

Y/ν2
have the same distribution. Therefore, we conclude

that:
F−1 d

=
Y/ν2
X/ν1

∼ Fν2,ν1 .
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Note 4.2. The most involved step in the construction of a CI by use of the pivotal
quantity method is the designation of the pivotal quantity itself, since the process
of determining it mostly depends on the distribution of T (X). In most cases, we
endeavor to transform T (X) into a pivotal quantity Q (X, g(ϑ)) which follows one
of the following 4 distributions: N (0, 1), χ2

ν , tν , Fν1,ν2 . In order to determine this
transformation, we either use some of the properties of the χ2 distribution detailed
in note 3.11 (page 38) or the definitions of the tν and Fν1,ν2 distributions. Obviously,
the choice of a suitable pivotal quantity isn’t unique.

Note 4.3. We summarize the most notable cases in which the previous 4 distributions
are used in the construction of CIs.

i. N (0, 1) distribution:

• CIs for the mean of a normal distribution when its variance is known.

• Asymptotic CIs using the central limit theorem.

ii. χ2
ν distribution:

• CIs for the variance of a normal distribution.

• CIs for a positive parameter of a continuous distribution with support which
doesn’t depend on the parameter.

iii. tν distribution: CIs for the mean of a normal distribution when its variance is
unknown.

iv. Fν1,ν2 distribution:

• CIs for the ratio of variances of 2 independent normal distributions.

• CIs for the ratio of 2 positive parameters of 2 independent continuous distri-
butions with supports which don’t depend on the values of the parameters.

Note 4.4. i. If we have a random sample X1, . . . , Xn ∼ U(k, ϑ) with known k, we
may define the pivotal quantity Q =

X(n)−k
ϑ−k ∼ Beta(n, 1).

ii. If we have a random sample X1, . . . , Xn ∼ U(ϑ, k) with known k, we may define
the pivotal quantity Q =

k−X(1)

k−ϑ ∼ Beta(n, 1).

Definition 4.5. Let X be a random variable with support S and CDF F (x). For
given α ∈ (0, 1), the constant c ∈ S for which it holds that P(X > c) = α or
equivalently F (c) = 1− α is called the upper α-quantile of the distribution.

Note 4.5. If the CDF F (x) is continuous, then it’s strictly increasing on S, so it’s
also invertible. Therefore, it holds that c = F−1(1 − a). In this case, the upper
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α-quantile of the distribution is the point to the right of which the area under the
curve of the PDF is equal to α. We denote the upper α-quantiles of the distributions
N (0, 1), χ2

ν , tν , Fν1,ν2 by Zα, χ2
ν;α, tν;α, Fν1,ν2;α respectively.

Note 4.6. The N (0, 1) and tν distributions are symmetric around 0, i.e. it holds
that f(−c) = f(c) and F (−c) = 1− F (c). Hence, we observe that P(X > c) = α ⇔
P(X > −c) = 1 − α. That is, c is their upper α-quantile if and only if −c is their
upper (1 − α)-quantile or equivalently Z1−α = −Za and tν;1−α = −tν;α. In contrast,
the support of the χ2

ν and Fν1,ν2 distributions is (0,∞), and they don’t exhibit any
symmetry. However, according to the properties of the Fν1,ν2 distribution, it holds
that Fν1,ν2;1−α = 1

Fν2,ν1;α
.

Note 4.7. The pivotal quantity method doesn’t provide a specific way of calculating
the constants c1, c2. In theory, this choice could be made in an infinite number of
possible ways, but it’s usually made in one of the following 2 ways:

i. P(Q < c1) = P(Q > c2) =
α
2 which leads to the construction of equal-tailed CIs.

ii. Minimization of the statistic ℓ(X) = U(X)−L(X) or its expected value E [ℓ(X)]

with respect to (c1, c2), which leads to the construction of minimum length CIs.

Minimum length CIs are better than equal-tailed CIs, but they’re also generally more
difficult to construct. In some cases, these 2 kinds of CIs may also coincide.

Note 4.8. If the distribution of the pivotal quantity Q is continuous, the constants
c1, c2 of equal-tailed CIs are chosen so that the area under the curve of the PDF of
Q to the left of c1 is equal to α

2 and the area under the curve of the PDF of Q to the
right of c2 is also equal to α

2 . In this way, the area under the curve of the PDF of Q
between c1 and c2 is equal to 1 − α, which is the desired confidence level. In other
words, c1 is chosen as the upper (1− α

2 )-quantile of Q and c2 is chosen as the upper
α
2 -quantile of Q.

Note 4.9. As far as the construction of minimum length CIs is concerned, we distin-
guish the following 2 important cases:

i. If the length of the CI is a multiple of c2−c1, then we specify the constants c1, c2
such that the CI will contain the values of Q with the highest density. To achieve
this we need to know about the behavior of the graph of the PDF of Q.

ii. Otherwise, we differentiate the constraint P(c1 ⩽ Q ⩽ c2) = 1−α with respect to
c1, paying attention to the fact that c2 is a function of c1, and solve with respect
to ∂c2

∂c1
. Next, we differentiate the length of the CI with respect to c1, substitute

the derivative ∂c2
∂c1

and infer the monotonicity of the length with respect to c1.

• If the length is a strictly decreasing function of c1, then c1 must take the
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minimum possible value on the support of Q and c2 is specified so that
P(Q ⩽ c2) = 1− α.

• If the length is a strictly increasing function of c1, then c2 must take the
maximum possible value on the support of Q and c1 is specified so that
P(Q ⩾ c1) = 1− α.

Example 4.1. Let X1, . . . , Xn be a random sample with F (x; k) = 1− e−λ(x−k) for
known λ > 0, k ∈ R and x ⩾ k. According to example 3.43 (page 75), the statistic
k̂(X) = X(1) is the MLE of k. According to example 3.52 (page 81), we know that
Yi = Xi − k ∼ Exp(λ) for i = 1, 2, . . . , n, so Y(1) = X(1) − k ∼ Exp(nλ). Since
the distribution of the random variable Y(1) doesn’t depend on the value of k, it
constitutes a suitable pivotal quantity Q. We solve the inequality c1 ⩽ Q ⩽ c2 with
respect to k:

c1 ⩽ X(1) − k ⩽ c2 ⇔ X(1) − c2 ⩽ k ⩽ X(1) − c1.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ 1− e−nλc1 =

α

2
⇒ c1 = − 1

nλ
log
(
1− α

2

)
,

P(Q > c2) =
α

2
⇒ e−nλc2 =

α

2
⇒ c2 = − 1

nλ
log

α

2
.

Therefore, we arrive at the following equal-tailed CI:[
X(1) +

1

nλ
log

α

2
, X(1) +

1

nλ
log
(
1− α

2

)]
.

The length of the CI is equal to c2 − c1. We observe that the PDF of the pivotal
quantityQ is strictly decreasing on [0,∞). Since we want the CI to attain its minimum
length, it’s equivalent to require that it contains the values of Q with the highest
density. Thus, the CI attains its minimum length for c1 = 0. We specify c2 such that:

P(Q ⩽ c2) = 1− α ⇒ 1− e−nλc2 = 1− α ⇒ c2 = − 1

nλ
logα.

Therefore, we arrive at the following minimum length CI:[
X(1) +

1

nλ
logα,X(1)

]
.

Example 4.2. Let X1, . . . , Xn ∼ U(ϑ, ϑ + 1) be a random sample with ϑ ∈ R.
According to example 3.16 (page 40), we know that T (X) =

(
X(1), X(n)

)
is a sufficient

statistic for ϑ. For x ∈ [ϑ, ϑ+ 1], we calculate that FX(n)
(x) = (x− ϑ)n. We define a
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pivotal quantity Q = X(n) − ϑ. For y ∈ [0, 1], we calculate that:

FQ(y) = P
[
X(n) − ϑ ⩽ y

]
= FX(n)

(y + ϑ) = yn,

i.e. Q ∼ Beta(n, 1). We solve the inequality c1 ⩽ Q ⩽ c2 with respect to ϑ:

c1 ⩽ X(n) − ϑ ⩽ c2 ⇔ X(n) − c2 ⩽ ϑ ⩽ X(n) − c1.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ cn1 =

α

2
⇒ c1 =

(α
2

)1/n
,

P(Q > c2) =
α

2
⇒ 1− cn2 =

α

2
⇒ c2 =

(
1− α

2

)1/n
.

Therefore, we arrive at the following equal-tailed CI:[
X(n) −

(
1− α

2

)1/n
, X(n) −

(α
2

)1/n]
.

The length of the CI is equal to c2 − c1. We observe that the PDF of the pivotal
quantity Q is strictly increasing on [0, 1]. Since we want the CI to attain its minimum
length, it’s equivalent to require that it contains the values of Q with the highest
density. Therefore, the CI attains its minimum length for c2 = 1. We specify c1 such
that:

P(Q ⩾ c1) = 1− α ⇒ 1− cn1 = 1− α ⇒ c1 = α1/n.

Therefore, a minimum length CI for ϑ is
[
X(n) − 1, X(n) − α1/n

]
.

Example 4.3. Let X1, . . . , Xn ∼ U(ϑ, k) be a random sample with known k. Ac-
cording to example 3.42 (page 75), the statistic ϑ̂(X) = X(1) is the MLE of ϑ. For
x ∈ [ϑ, k], we calculate that:

FX(1)
(x) = 1−

(
k − x

k − ϑ

)n
.

We define a pivotal quantity Q =
k−X(1)

k−ϑ . For y ∈ [0, 1], we calculate that:

FQ(y) = P
[
k −X(1)

k − ϑ
⩽ y

]
= 1− FX(1)

(k − (k − ϑ)y) =

[
k − k + (k − ϑ)y

k − ϑ

]n
= yn,

i.e. Q ∼ Beta(n, 1). We solve the inequality c1 ⩽ Q ⩽ c2 with respect to ϑ:

c1 ⩽
k −X(1)

k − ϑ
⩽ c2 ⇔ k −

k −X(1)

c1
⩽ ϑ ⩽ k −

k −X(1)

c2
.
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For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ cn1 =

α

2
⇒ c1 =

(α
2

)1/n
,

P(Q > c2) =
α

2
⇒ 1− cn2 =

α

2
⇒ c2 =

(
1− α

2

)1/n
.

Therefore, we arrive at the following equal-tailed CI:[
k −

(
k −X(1)

) (α
2

)−1/n
, k −

(
k −X(1)

) (
1− α

2

)−1/n
]
.

The length of the CI is equal to
(
k −X(1)

) (
1
c1

− 1
c2

)
. We want to minimize the

function ℓ(c1, c2) =
1
c1

− 1
c2

under the following constraint:

P(c1 ⩽ Q ⩽ c2) = 1− α ⇒ FQ(c2)− FQ(c1) = 1− α ⇒ cn2 − cn1 = 1− α.

First, we differentiate the constraint with respect to c2:

ncn−1
2 − ncn−1

1

∂c1
∂c2

= 0 ⇒ ∂c1
∂c2

=

(
c2
c1

)n−1

.

Next, we differentiate ℓ with respect to c2:

∂ℓ

∂c2
= − 1

c21

∂c1
∂c2

+
1

c22
= − 1

c21

(
c2
c1

)n−1

+
1

c22
=
cn+1
1 − cn+1

2

cn+1
1 c22

< 0.

We also know that c2 ∈ [0, 1]. Since the length of the CI is a strictly decreasing
function of c2, we infer that it attains its minimum length for c2 = 1. We specify c1
such that:

P(Q ⩾ c1) = 1− α ⇒ 1− cn1 = 1− α ⇒ c1 = α1/n.

Therefore, a minimum length CI for ϑ is
[
k −

(
k −X(1)

)
α−1/n, X(1)

]
.

Example 4.4. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with k > 0, known
λ > 0 and F (x; k) = 1 −

(
k
x

)λ for x ⩾ k. According to example 3.43 (page 75), the
statistic k̂(X) = X(1) is the MLE of k. For x ⩾ k, we calculate that:

FX(1)
(x) = 1−

(
k

x

)nλ
,

i.e. X(1) ∼ Pareto(k, nλ). We define a pivot Q =
X(1)

k . For y ⩾ 1, we calculate that:

FQ(y) = P
[
X(1)

k
⩽ y

]
= FX(1)

(ky) = 1−
(
1

y

)nλ
,
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i.e. Q ∼ Pareto(1, nλ). We solve the inequality c1 ⩽ Q ⩽ c2 with respect to k:

c1 ⩽
X(1)

k
⩽ c2 ⇔

X(1)

c2
⩽ k ⩽

X(1)

c1
.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ 1− 1

cnλ1
=
α

2
⇒ c1 =

(
1− α

2

)−1/nλ
,

P(Q > c2) =
α

2
⇒ 1

cnλ2
=
α

2
⇒ c2 =

(α
2

)−1/nλ
.

Therefore, we arrive at the following equal-tailed CI:[
X(1)

(α
2

)1/nλ
, X(1)

(
1− α

2

)1/nλ]
.

The length of the CI is equal to X(1)

(
1
c1

− 1
c2

)
. We want to minimize the function

ℓ(c1, c2) =
1
c1

− 1
c2

under the following constraint:

P(c1 ⩽ Q ⩽ c2) = 1−α ⇒ FQ(c2)−FQ(c1) = 1−α ⇒ c−nλ1 − c−nλ2 = 1−α.

First, we differentiate the constraint with respect to c1:

− nλ

cnλ+1
1

+
nλ

cnλ+1
2

∂c2
∂c1

= 0 ⇒ ∂c2
∂c1

=

(
c2
c1

)nλ+1

.

Next, we differentiate ℓ with respect to c1:

∂ℓ

∂c1
= − 1

c21
+

1

c22

∂c2
∂c1

= − 1

c21
+

1

c22

(
c2
c1

)nλ+1

=
cnλ−1
2 − cnλ−1

1

cnλ+1
1

> 0.

We also know that c1 ⩾ 1. Since the length of the CI is a strictly increasing function
of c1, we infer that it attains its minimum length for c1 = 1. We specify c2 such that:

P(Q ⩽ c2) = 1− α ⇒ 1− 1

cnλ2
= 1− α ⇒ c2 = α−1/nλ.

Therefore, a minimum length CI for k is
[
α1/nλX(1), X(1)

]
.

Example 4.5. Let X1, . . . , Xn ∼ Gamma(k, λ) be a random sample with known k.
We can easily show that the statistic T (X) =

∑n
i=1Xi ∼ Gamma(nk, λ) is sufficient

for λ. According to note 3.11 (page 38), we define a pivotal quantity Q = 2λT ∼ χ2
2nk.

We solve the inequality c1 ⩽ Q ⩽ c2 with respect to λ:

c1 ⩽ 2λ
n∑
i=1

Xi ⩽ c2 ⇔ c1
2
∑n

i=1Xi
⩽ λ ⩽ c2

2
∑n

i=1Xi
.
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For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ P(Q > c1) = 1− α

2
⇒ c1 = χ2

2nk;1−α/2,

P(Q > c2) =
α

2
⇒ c2 = χ2

2nk;α/2.

Therefore, we arrive at the following equal-tailed CI:[
χ2
2nk;1−α/2

2
∑n

i=1Xi
,
χ2
2nk;α/2

2
∑n

i=1Xi

]
.

Example 4.6. Let X1, . . . , Xn ∼ Laplace(µ, λ) be a random sample with known
µ ∈ R, λ > 0 and f(x;λ) = λ

2 e
−λ|x−µ| for x ∈ R. We can easily show that the statistic

T (X) =
∑n

i=1 |Xi − µ| is sufficient for λ. We define Yi = |Xi − µ| for i = 1, 2, . . . , n.
For y > 0, we calculate that:

FY1(y) = P (|X − µ| ⩽ y) = P(µ− y ⩽ X ⩽ µ+ y) = F (µ+ y;λ)− F (µ− y;λ),

fY1(y) = f(µ+ y;λ) + f(µ− y;λ) =
λ

2
e−λ|y| +

λ

2
e−λ|−y| =

λ

2
e−λy +

λ

2
e−λy = λe−λy,

i.e. Yi ∼ Exp(λ) for i = 1, 2, . . . , n, so it follows that T (X) ∼ Gamma(n, λ). In exactly
the same manner as in the previous example, we define the pivot Q = 2λT ∼ χ2

2n

and calculate that c1 = χ2
2n;1−α/2, c2 = χ2

2n;α/2. Therefore, we arrive at the following
equal-tailed CI: [

χ2
2n;1−α/2

2
∑n

i=1 |Xi − µ|
,

χ2
2n;α/2

2
∑n

i=1 |Xi − µ|

]
.

Example 4.7. Let X1, . . . , Xn ∼ Beta(1, ϑ) be a random sample with ϑ > 0 and
f(x;ϑ) = ϑ(1−x)ϑ−1 for x ∈ (0, 1). We can show that T (X) = −

∑n
i=1 log(1−Xi) is

a sufficient statistic for ϑ. We define Yi = − log(1−Xi) for i = 1, 2, . . . , n. For y > 0,
we calculate that:

FY1(y) = P (− log(1−X1) ⩽ y) = P
(
1−X1 ⩾ e−y

)
= F

(
1− e−y;ϑ

)
,

fY1(y) = e−yf
(
1− e−y;ϑ

)
= e−yϑ

(
1− 1 + e−y

)ϑ−1
= ϑe−ϑy,

i.e. Yi ∼ Exp(ϑ) for i = 1, 2, . . . , n, so it follows that T (X) ∼ Gamma(n, ϑ). In exactly
the same manner as in the previous example, we define the pivot Q = 2ϑT ∼ χ2

2n

and calculate that c1 = χ2
2n;1−α/2, c2 = χ2

2n;α/2. Therefore, we arrive at the following
equal-tailed CI: [

−
χ2
2n;1−α/2

2
∑n

i=1 log(1−Xi)
,−

χ2
2n;α/2

2
∑n

i=1 log(1−Xi)

]
.
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Example 4.8. Let X1, . . . , Xn be a random sample with F (x;λ) = 1− e−λ(x−k) for
λ > 0, known k ∈ R and x ⩾ k. According to example 4.1 (page 88), we know that
Yi = Xi − k ∼ Exp(λ) for i = 1, 2, . . . , n, so T (X) =

∑n
i=1Xi − nk ∼ Gamma(n, λ).

In exactly the same manner as in the previous example, we define the pivotal quantity
Q = 2λT ∼ χ2

2n and calculate that c1 = χ2
2n;1−α/2, c2 = χ2

2n;α/2. Therefore, we arrive
at the following equal-tailed CI:[

χ2
2n;1−α/2

2
∑n

i=1Xi − 2nk
,

χ2
2n;α/2

2
∑n

i=1Xi − 2nk

]
.

Example 4.9. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with known k > 0,
λ > 0, f(x;λ) = λkλ

xλ+1 and F (x;λ) = 1−
(
k
x

)λ for x ⩾ k. We calculate that:

ℓ(λ | x) = n log λ+ nλ log k − (λ+ 1)
n∑
i=1

log xi,

∂ℓ(λ | x)
∂λ

=
n

λ
+ n log k −

n∑
i=1

log xi = 0 ⇒

λ̂(x) =
n∑n

i=1 log xi − n log k
=

n∑n
i=1 log

xi
k

,
∂2ℓ(λ | x)
∂λ2

= − n

λ2
< 0, ∀λ > 0.

We define Yi = log Xi
k for i = 1, 2, . . . , n. For y > 0, we calculate that:

FY1(y) = P
(
log

X1

k
⩽ y

)
= F (pey;λ) = 1− kλ

kλeλy
= 1− e−λy,

i.e. Yi ∼ Exp(λ) for i = 1, 2, . . . , n and T (X) =
∑n

i=1 log
Xi
k ∼ Gamma(n, λ). In

exactly the same manner as in the previous example, we define the pivotal quantity
Q = 2λT ∼ χ2

2n and calculate that c1 = χ2
2n;1−α/2, c2 = χ2

2n;α/2. Therefore, we arrive
at the following equal-tailed CI:[

χ2
2n;1−α/2

2
∑n

i=1 logXi − 2n log k
,

χ2
2n;α/2

2
∑n

i=1 logXi − 2n log k

]
.

Example 4.10. Let X1, . . . , Xn ∼ Exp(λ1) and Y1, . . . , Ym ∼ Exp(λ2) be 2 inde-
pendent random samples. We want to construct a CI for the ratio λ1

λ2
. We know

that T1(X) =
∑n

i=1Xi ∼ Gamma(n, λ1) and T2(Y ) =
∑m

i=1 Yi ∼ Gamma(m,λ2)
are sufficient statistics for λ1 and λ2 respectively. Let Q1 = 2λ1T1 ∼ χ2

2n and
Q2 = 2λ2T2 ∼ χ2

2m. Since the 2 samples are independent of each other, we infer
that the random variables Q1 and Q2 are also independent. Hence, we construct the



94 CHAPTER 4. CONFIDENCE INTERVALS

following pivotal quantity:

Q =
Q1/2n

Q2/2m
=
λ1
λ2

X

Y
∼ F2n,2m.

We solve the inequality c1 ⩽ Q ⩽ c2 with respect to λ1
λ2

:

c1 ⩽
λ1
λ2

X

Y
⩽ c2 ⇔ c1

Y

X
⩽ λ1
λ2

⩽ c2
Y

X
.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ P(Q > c1) = 1− α

2
⇒ c1 = F2n,2m;1−α/2,

P(Q > c2) =
α

2
⇒ c2 = F2n,2m;α/2.

Therefore, we arrive at the following equal-tailed CI:[
F2n,2m;1−α/2

Y

X
,F2n,2m;α/2

Y

X

]
.

4.3 CIs for a Normal Population

LetX1, . . . , Xn ∼ N
(
µ, σ2

)
be a random sample. We want to construct CIs for the

parameters µ and σ2. We distinguish 4 different cases which we present throughout
this paragraph.

Example 4.11. The variance σ2 is known. According to example 3.44 (page 76),
the statistic X ∼ N

(
µ, 1nσ

2
)

is the MLE of µ. Hence, we define a pivotal quantity
Q = X−µ

σ/
√
n
∼ N (0, 1). We solve the inequality c1 ⩽ Q ⩽ c2 with respect to µ:

c1 ⩽
X − µ

σ/
√
n

⩽ c2 ⇔ X − c2
σ√
n
⩽ µ ⩽ X − c1

σ√
n
.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ P(Q > c1) = 1− α

2
⇒ c1 = Z1−α/2 = −Zα/2,

P(Q > c2) =
α

2
⇒ c2 = Zα/2.

Therefore, we arrive at the following equal-tailed CI:[
X − Zα/2

σ√
n
,X + Zα/2

σ√
n

]
.

The length of the CI is equal to σ√
n
(c2 − c1). We observe that the PDF of the pivotal
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quantity Q is symmetric and unimodal around 0. Since we want the CI to attain its
minimum length, it’s equivalent to require that it contains the values of Q with the
highest density. Therefore, the CI attains its minimum length for c2 = −c1, which
implies that the minimum length CI coincides with the equal-tailed CI.

Note 4.10. We observe that the length of the previous CI is equal to ℓ = 2Zα/2
σ√
n

,
i.e. it doesn’t depend on the sample X. We note the following facts:

• The length of the CI is a strictly decreasing function of the sample size n,
which means that the CI becomes more and more precise as we collect more
observations for our sample.

• The length of the CI is a strictly increasing function of the variance σ2, which
means that the smaller the variation of the observations in the sample is the
larger the precision of the constructed CI will be.

• Since it holds that Zα/2 = Φ−1
(
1− α

2

)
and the inverse of the CDF Φ of the

N (0, 1) distribution is a strictly increasing function, we infer that the length of
the CI is a strictly decreasing function of α or equivalently a strictly increasing
function of 1− α. In other words, the larger the "confidence" we want to have
that the true value of ϑ is going to lie within the CI the wider the CI we need
to construct is going to be.

Example 4.12. The variance σ2 is equal to 4. We want to determine the smallest
possible sample size n such that the 99% CI for µ has length at most equal to 0.1.
Since α = 0.01, we demand the following:

ℓ = 2Z0.005
σ√
n
⩽ 0.1 ⇒ n ⩾ 4Z2

0.005

σ2

0.01
≈ 10615.83,

which means that the smallest possible sample size we require is n = 10616.

Example 4.13. The variance σ2 is unknown and we want to construct a CI for the
mean µ. The random variable Z = X−µ

σ/
√
n
∼ N (0, 1) doesn’t constitute a pivotal quan-

tity anymore, since it depends on the value of the unknown parameter σ2. According
to example 3.26 (page 49), we know that the statistic S2 = 1

n−1

∑n
i=1(Xi − X)2 is

the UMVUE of σ2. According to note 3.11, we know that V = n−1
σ2 S

2 ∼ χ2
n−1. Addi-

tionally, the random variables Z and V are independent according to Basu’s theorem.
Therefore, we construct the following pivotal quantity:

Q =
Z√

V/(n− 1)
=

X−µ
σ/

√
n

S/σ
=
X − µ

S/
√
n

∼ tn−1.
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We solve the inequality c1 ⩽ Q ⩽ c2 with respect to µ:

c1 ⩽
X − µ

σ/
√
n

⩽ c2 ⇔ X − c2
S√
n
⩽ µ ⩽ X − c1

S√
n
.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ P(Q > c1) = 1− α

2
⇒ c1 = tn−1;1−α/2 = −tn−1;α/2,

P(Q > c2) =
α

2
⇒ c2 = tn−1;α/2.

Therefore, we arrive at the following equal-tailed CI:[
X − tn−1;α/2

S√
n
,X + tn−1;α/2

S√
n

]
.

The length of the CI is equal to S√
n
(c2 − c1). We observe that the PDF of the pivotal

quantity Q is symmetric and unimodal around 0. Since we want the CI to attain its
minimum length, it’s equivalent to require that it contains the values of Q with the
highest density. Therefore, the CI attains its minimum length for c2 = −c1, which
implies that the minimum length CI coincides with the equal-tailed CI.

Example 4.14. The mean µ is known. According to example 3.38 (page 73), the
statistic σ̂2 = 1

n

∑n
i=1(Xi − µ)2 is the MLE of σ2. According to note 3.11, we define

a pivot Q = n
σ2 σ̂

2 ∼ χ2
n. We solve the inequality c1 ⩽ Q ⩽ c2 with respect to σ2:

c1 ⩽
1

σ2

n∑
i=1

(Xi − µ)2 ⩽ c2 ⇔ 1

c2

n∑
i=1

(Xi − µ)2 ⩽ σ2 ⩽ 1

c1

n∑
i=1

(Xi − µ)2.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ P(Q > c1) = 1− α

2
⇒ c1 = χ2

n;1−α/2,

P(Q > c2) =
α

2
⇒ c2 = χ2

n;α/2.

Therefore, we arrive at the following equal-tailed CI:[
1

χ2
n;α/2

n∑
i=1

(Xi − µ)2,
1

χ2
n;1−α/2

n∑
i=1

(Xi − µ)2

]
.

Example 4.15. The mean µ is unknown and we want to construct an equal-tailed
CI for the variance σ2. We know that the statistic S2 = 1

n−1

∑n
i=1(Xi − X)2 is

the UMVUE of σ2, so we define a pivot Q = n−1
σ2 S

2 ∼ χ2
n−1. In exactly the same

manner as in the previous example, we calculate that c1 = χ2
n−1;1−α/2, c2 = χ2

n−1;α/2.
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Therefore, we arrive at the following equal-tailed CI:[
1

χ2
n−1;α/2

n∑
i=1

(
Xi −X

)2
,

1

χ2
n−1;1−α/2

n∑
i=1

(
Xi −X

)2]
.

4.4 CIs for Two Independent Normal Populations

Let X1, . . . , Xn ∼ N
(
µ1, σ

2
1

)
and Y1, . . . , Ym ∼ N

(
µ2, σ

2
2

)
be 2 independent ran-

dom samples. We want to construct CIs for the mean difference µ1 − µ2 and the
variance ratio σ2

1

σ2
2
. We distinguish 4 different cases which we present throughout this

paragraph.

Example 4.16. The variances σ21 and σ22 are known. We know that the statistics
X ∼ N

(
µ1,

1
nσ

2
1

)
and Y ∼ N

(
µ2,

1
mσ

2
2

)
are the MLEs of µ1 and µ2 respectively.

Since the 2 samples are independent, we infer that the statistics X and Y are also
independent, so it follows that X − Y ∼ N

(
µ1 − µ2,

1
nσ

2
1 +

1
mσ

2
2

)
. We construct the

following pivotal quantity:

Q =
X − Y − (µ1 − µ2)√

1
nσ

2
1 +

1
mσ

2
2

∼ N (0, 1).

In exactly the same manner as in example 4.11 (page 94), we infer that c1 = −Zα/2,
c2 = Zα/2. Therefore, we arrive at the following equal-tailed CI:[

X − Y − Zα/2

√
1

n
σ21 +

1

m
σ22, X − Y + Zα/2

√
1

n
σ21 +

1

m
σ22

]
.

We note that the minimum length CI for the mean difference µ1 − µ2 coincides with
the above equal-tailed CI.

Example 4.17. The variances σ21 and σ22 are unknown but equal to some common
variance σ2. In exactly the same manner as in the previous example, we define the
following random variable:

Z =
X − Y − (µ1 − µ2)

σ
√

1
n + 1

m

∼ N (0, 1),

which doesn’t constitute a pivot, since it depends on the value of the unknown pa-
rameter σ2. We know that S2

1 = 1
n−1

∑n
i=1(Xi −X)2 and S2

2 = 1
m−1

∑m
i=1

(
Yi − Y

)2
are 2 different UMVUEs of σ2 based on the samples X and Y respectively, so it
follows that the pooled sample variance S2

p =
(n−1)S2

1+(m−1)S2
2

n+m−2 is the UMVUE of σ2

based on the 2 samples put together. We also know that V1 = n−1
σ2 S

2
1 ∼ χ2

n−1 and
V2 = m−1

σ2 S2
2 ∼ χ2

m−1. Since the 2 samples are also independent, we infer that the
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random variables V1 and V2 are independent. According to note 3.11, we infer that:

W =
n+m− 2

σ2
S2
p =

(n− 1)S2
1 + (m− 1)S2

2

σ2
= V1 + V2 ∼ χ2

n+m−2.

According to Basu’s theorem, the random variables Z and W are independent, so we
construct the following pivotal quantity:

Q =
Z√

W/(n+m− 2)
=

X−Y−(µ1−µ2)
σ
√

1
n
+ 1

m

Sp/σ
=
X − Y − (µ1 − µ2)

Sp

√
1
n + 1

m

∼ tn+m−2.

In exactly the same manner as in example 4.13 (page 95), c1 = −tn+m−2;α/2 and
c2 = tn+m−2;α/2. Therefore, we arrive at the following equal-tailed CI:[

X − Y − tn+m−2;α/2Sp

√
1

n
+

1

m
,X − Y + tn+m−2;α/2Sp

√
1

n
+

1

m

]
.

We note that the minimum length CI for the mean difference µ1 − µ2 coincides with
the above equal-tailed CI.

Example 4.18. The means µ1 and µ2 are known. We know that the statistics
σ̂21 = 1

n

∑n
i=1(Xi − µ1)

2 and σ̂22 = 1
m

∑m
i=1(Yi − µ2)

2 are the MLEs of σ21 and σ22

respectively. We also know that V1 = n
σ2
1
σ̂21 ∼ χ2

n and V2 = m
σ2
2
σ̂22 ∼ χ2

m. Since the
2 samples are independent, we infer that the random variables V1 and V2 are also
independent. Therefore, we construct the following pivotal quantity:

Q =
V1/n

V2/m
=
σ̂21
σ̂22

σ22
σ21

=

∑n
i=1(Xi − µ1)

2∑m
i=1(Yi − µ2)2

σ22
σ21

∼ Fn,m.

We solve the inequality c1 ⩽ Q ⩽ c2 with respect to σ2
1

σ2
2
:

c1 ⩽
σ̂21
σ̂22

σ22
σ21

⩽ c2 ⇔ 1

c2

σ̂21
σ̂22

⩽ σ22
σ21

⩽ 1

c1

σ̂21
σ̂22
.

For the equal-tailed CI, we specify constants c1, c2 such that:

P(Q < c1) =
α

2
⇒ P(Q > c1) = 1− α

2
⇒ c1 = Fn,m;1−α/2,

P(Q > c2) =
α

2
⇒ c2 = Fn,m;α/2.

Therefore, we arrive at the following equal-tailed CI:[
1

Fn,m;α/2

σ̂21
σ̂22
,

1

Fn,m;1−α/2

σ̂21
σ̂22

]
=

[
Fm,n;1−α/2

σ̂21
σ̂22
, Fm,n;α/2

σ̂21
σ̂22

]
.
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Example 4.19. The means µ1 and µ2 are unknown and we want to construct an
equal-tailed CI for the variance ratio σ2

1

σ2
2
. We know that S2

1 = 1
n−1

∑n
i=1

(
Xi −X

)2
and S2

2 = 1
m−1

∑m
i=1

(
Yi − Y

)2 are the UMVUEs of σ21 and σ22 respectively. We also
know that V1 = n−1

σ2
1
S2
1 ∼ χ2

n−1 and V2 = m−1
σ2
2
S2
2 ∼ χ2

m−1. Since the 2 samples
are independent, we infer that the random variables V1 and V2 are also independent.
Therefore, we construct the following pivotal quantity:

Q =
V1/(n− 1)

V2/(m− 1)
=
S2
1

S2
2

σ22
σ21

∼ Fn−1,m−1.

In exactly the same manner as in the previous example, c1 = Fn−1,m−1;1−α/2 and
c2 = Fn−1,m−1;α/2. Therefore, we arrive at the following equal-tailed CI:

[
1

Fn−1,m−1;α/2

S2
1

S2
2

,
1

Fn−1,m−1;1−α/2

S2
1

S2
2

]
=

[
Fm−1,n−1;1−α/2

S2
1

S2
2

, Fm−1,n−1;α/2
S2
1

S2
2

]
.

4.5 Asymptotic Confidence Intervals

Definition 4.6. For given α ∈ (0, 1), we consider a random interval of the form
Ig(ϑ);1−α (X) = [Ln (X) , Un (X)] such that:

lim
n→∞

inf
ϑ∈Θ

Pϑ [Ln(X) ⩽ g(ϑ) ⩽ Un(X)] = 1− α,

which is called a 100(1− α)% asymptotic confidence interval for g(ϑ).

Note 4.11. For the construction of an asymptotic CI it suffices to determine a se-
quence of random variables Qn (X, g(ϑ)) which depends on the value of the parametric
function g(ϑ) and converges in distribution to some random variable whose distribu-
tion doesn’t depend on the value of ϑ. For this reason, we make use of the asymptotic
results presented in paragraph 3.10.

Example 4.20. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with k > 0,
known λ > 2 and F (x; k) = 1 −

(
k
x

)λ for x ⩾ k. According to example 3.34 (page
70), we know that n

[
X(1) − k

] d→ Y ∼ Exp (λ/k). According to Slutsky’s theorem,
it follows that:

Qn = n

[
X(1)

k
− 1

]
d→ 1

k
Y = V ∼ Exp(λ).

We solve the inequality c1 ⩽ Qn ⩽ c2 with respect to k:

c1 ⩽ n

[
X(1)

k
− 1

]
⩽ c2 ⇔

X(1)

1 + c2/n
⩽ k ⩽

X(1)

1 + c1/n
.
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For the asymptotic equal-tailed CI, we specify constants c1, c2 such that:

lim
n→∞

P(Qn < c1) =
α

2
⇒ P(V < c1) =

α

2
⇒ c1 = − 1

λ
log
(
1− α

2

)
,

lim
n→∞

P(Qn > c2) =
α

2
⇒ P(V > c2) =

α

2
⇒ c2 = − 1

λ
log

α

2
.

Therefore, we arrive at the following asymptotic equal-tailed CI:[
X(1)

1− log (α/2) /nλ
,

X(1)

1− log (1− α/2) /nλ

]
.

Example 4.21. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. According to ex-
ample 3.33 (page 69), we know that

√
n
(

1
Xn

− λ
)

d→ Y ∼ N
(
0, λ2

)
. According to

Slutsky’s theorem, it follows that:

Qn =
√
n

(
1

λXn

− 1

)
d→ 1

λ
Y = Z ∼ N (0, 1) .

We solve the inequality c1 ⩽ Qn ⩽ c2 with respect to λ:

c1 ⩽
√
n

(
1

λXn

− 1

)
⩽ c2 ⇔ 1

Xn (1 + c2/
√
n)

⩽ λ ⩽ 1

Xn (1 + c1/
√
n)
.

For the asymptotic equal-tailed CI, we specify constants c1, c2 such that:

lim
n→∞

P(Qn < c1) =
α

2
⇒ P(Z > c1) = 1− α

2
⇒ c1 = Z1−α/2 = −Zα/2,

lim
n→∞

P(Qn > c2) =
α

2
⇒ P(Z > c2) =

α

2
⇒ c2 = Zα/2.

Therefore, we arrive at the following asymptotic equal-tailed CI:[
1

Xn

(
1 + Zα/2/

√
n
) , 1

Xn

(
1− Zα/2/

√
n
)] .

Example 4.22. Let X1, . . . , Xn ∼ Bernoulli(p) be a random sample. According
to the central limit theorem, we know that

√
n
(
Xn − p

) d→ Y ∼ N (0, p(1− p)).
According to the weak law of large numbers, we also know that Xn

p→ p. According
to Slutsky’s theorem, it follows that:

Qn =

√
n
(
Xn − p

)√
Xn

(
1−Xn

) d→ 1√
p(1− p)

Y = Z ∼ N (0, 1).
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We solve the inequality c1 ⩽ Qn ⩽ c2 with respect to p:

c1 ⩽
√
n
(
Xn − p

)√
Xn

(
1−Xn

) ⩽ c2 ⇔

Xn − c2

√
1

n
Xn

(
1−Xn

)
⩽ p ⩽ Xn − c1

√
1

n
Xn

(
1−Xn

)
.

In exactly the same manner as in the previous example, it follows that c1 = −Zα/2,
c2 = Zα/2. Therefore, we arrive at the following asymptotic equal-tailed CI:[

Xn − Zα/2

√
1

n
Xn

(
1−Xn

)
, Xn + Zα/2

√
1

n
Xn

(
1−Xn

)]
.

We note that the above asymptotic CI for p ∈ (0, 1) tends to cover wider and wider
intervals outside of the parameter space as p tends towards 0 or 1.

Example 4.23. Let X1, . . . , Xn ∼ N (µ, σ2) be a random sample. We want to con-
struct an asymptotic CI for the mean µ. According to example 3.32 (page 68), we
know that:

Qn =
Xn − µ

Sn/
√
n

d→ Z ∼ N (0, 1).

In exactly the same manner as in the previous example, it follows that c1 = −Zα/2,
c2 = Zα/2. Therefore, we arrive at the following asymptotic equal-tailed CI:[

Xn − Zα/2
Sn√
n
,Xn + Zα/2

Sn√
n

]
.
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Chapter 5

Statistical Hypothesis Testing

5.1 Introduction

In statistical data analysis we are often called to make a decision about whether
a formulated statistical hypothesis is mistaken or not. This claim whose validity is
called into question is called the null hypothesis and is denoted byH0. The designation
of the null hypothesis leads to the formulation of an alternative hypothesis, which
is denoted by H1. The decision we are called to make is whether to reject the null
hypothesis H0 or not in favor of the alternative hypothesis H1. The statistic according
to which we make a proper decision is called a statistical hypothesis test.

More precisely, the statistical hypotheses H0 and H1 concern the CDF F of a
random variable X, which belongs to a class of CDFs F . The hypotheses H0 and H1

take the form H0 : F ∈ F0 vs. H1 : F ∈ F1, where F0,F1 ⊂ F with F0 ∩ F1 = ∅.
The decision we make is based on a sample x from the CDF F .

In the framework of parametric statistics, the class of CDFs F is parameterized
by an unknown parameter ϑ, so it takes the form Fϑ = {F (x;ϑ) : ϑ ∈ Θ}. Hence, the
hypotheses H0 and H1 specifically concern the value of the unknown parameter ϑ. In
other words, the hypotheses H0 and H1 take the form H0 : ϑ ∈ Θ0 vs. H1 : ϑ ∈ Θ1,
where Θ0,Θ1 ⊂ Θ with Θ0 ∩Θ1 = ∅.

A statistical hypothesis is called simple if it fully determines the CDF F (x;ϑ).
For example, the null hypothesis H0 : ϑ ∈ Θ0 is simple if the set Θ0 coincides with a
singleton {ϑ0}. Otherwise, it’s called a composite hypothesis.

Example 5.1. i. H0 : X ∼ N (0, 1) vs. H1 : X ∼ Laplace(0, 1) is a test of a simple
hypothesis vs. a simple hypothesis.

ii. If X ∼ N (µ, σ2) with known σ2, then H0 : µ = µ0 vs. H1 : µ = µ1 is a test of a
simple hypothesis vs. a simple hypothesis, since Θ0 = {µ0} and Θ1 = {µ1}.

103
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iii. If X ∼ N (µ, σ2) with known σ2, then H0 : µ = µ0 vs. H1 : µ > µ0 is a test of
a simple hypothesis vs. a one-sided composite hypothesis, since Θ0 = {µ0} and
Θ1 = (µ0,∞).

iv. If X ∼ N (µ, σ2) with known σ2, then H0 : µ = µ0 vs. H1 : µ ̸= µ0 is a test of
a simple hypothesis vs. a tow-sided composite hypothesis, since Θ0 = {µ0} and
Θ1 = R \ {µ0}.

v. If X ∼ N (µ, σ2) with σ2 unknown, then H0 : µ = µ0 vs. H1 : µ = µ1 is a test
of a composite hypothesis vs. a composite hypothesis, since Θ0 = {µ0} × (0,∞)

and Θ1 = {µ1} × (0,∞).

Definition 5.1. A statistic φ(X) : S → [0, 1] which determines the decision about
whether to reject a null hypothesis H0 or not in favor of an alternative hypothesis H1

is called a statistical test. If the function φ takes the following form:

φ(x) =

1, reject H0

0, don’t reject H0

,

then the test is called non-randomized. Otherwise, if it takes the following form:

φ(x) =


1, reject H0

γ, reject H0 with probability γ ∈ (0, 1)

0, don’t reject H0

,

then the test is called randomized.

Note 5.1. A non-randomized test partitions the support of the distribution of the
sample x into 2 disjoint subsets R and A, i.e. S = R ∪ A with R ∩ A = ∅. It holds
that:

• If x ∈ R, then we reject the null hypothesis H0. The subset R is called the
critical region (or rejection region) of the test.

• If x ∈ A, then we don’t reject the null hypothesis H0. The subset A = S \R is
called the acceptance region of the test.

Note 5.2. When we conduct a hypothesis test, then we might make the correct
decision or we might commit one of the following 2 errors:

• Type I Error → Reject H0 when it’s in fact true. It holds that:

Pϑ(Type I Error) = Pϑ(X ∈ R), ϑ ∈ Θ0.
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• Type II Error → Fail to reject H0 when it’s in fact untrue. It holds that:

Pϑ(Type II Error) = Pϑ(X ∈ A), ϑ ∈ Θ1.

Do not reject H0 Reject H0

H0 True True Negative Type I Error
H0 Not True Type II Error True Positive

Table 5.1: Summary of a Hypothesis Test’s Possible Outcomes

Definition 5.2. i. The following function:

βφ(ϑ) = Pϑ(Correct Rejection of H0) = Pϑ(X ∈ R)

= 1− Pϑ(Type II Error), ϑ ∈ Θ1,

is called the power of a test φ.

ii. The following function:

πφ(ϑ) = Eϑ [φ(X)] = Pϑ(Reject H0) = Pϑ(X ∈ R)

=

Pϑ(Type I Error), ϑ ∈ Θ0

βφ(ϑ), ϑ ∈ Θ1

,

is called the power function of a test φ.

iii. The following quantity:

sup
ϑ∈Θ0

πφ(ϑ) = sup
ϑ∈Θ0

Pϑ(X ∈ R) = sup
ϑ∈Θ0

Pϑ(Type I Error),

is called the size of a test φ.

Note 5.3. For finite sample sizes it’s not possible to minimize Pϑ(Type I Error)
and Pϑ(Type II Error) simultaneously. In fact, as one decreases the other usually
increases. Because the null hypothesis H0 is the hypothesis we lean on when designing
the test, its erroneous rejection usually entails the largest risk. For this reason, we
prespecify an upper limit α for the probability of committing a type I error, and we
try to minimize the probability of committing a type II error, or equivalently we try
to maximize the power of the test under this constraint. In other words, we want to
maximize the function βφ under the constraint supϑ∈Θ0

πφ(ϑ) ⩽ α.

Definition 5.3. The upper limit α on the size of a test is called the statistical
significance level of the test.

Definition 5.4. A test φ of size α, i.e. for which it holds that supϑ∈Θ0
πφ(ϑ) = α, is



106 CHAPTER 5. STATISTICAL HYPOTHESIS TESTING

called a uniformly most powerful (UMP) test if for every other test φ∗ at significance
level α it holds that βφ(ϑ) ⩾ βφ∗(ϑ) ∀ϑ ∈ Θ1.

Note 5.4. i. If the distribution of the sample is continuous and the null hypothesis
is simple, i.e. Θ0 = {ϑ0}, it’s easy to determine a test of size α, since it follows
that supϑ∈Θ0

πφ(ϑ) = Pϑ0(X ∈ R).

ii. If the distribution of the sample is discrete, it’s not always feasible to construct a
non-randomized test of a specific size. In this case, randomized tests are usually
utilized.

Example 5.2. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. If the critical region
of the test for the hypotheses H0 : ϑ = 0.5 vs. H1 : ϑ = 0.25 at statistical signif-
icance level α = 5% is of the form R =

{
x ∈ (0, ϑ)n : x(n) < c

}
and it holds that

P0.25(Type II Error) = 0.2, then we want to specify the constant c and the sample
size n. For x ∈ (0, ϑ), we know that FX(n)

(x) =
(
x
ϑ

)n. First, we calculate that:

E0.5 [φ(X)] = P0.5(X ∈ R) = P0.5

[
X(n) < c

]
= (2c)n = α ⇒ c =

1

2
0.051/n.

Furthermore, we know that:

P0.25(Type II Error) = P0.25(X /∈ R) = P0.25(X(n) ⩾ c) = 1− (4c)n = 0.2 ⇒

c =
1

4
0.81/n ⇒ 1

2
0.051/n =

1

4
0.81/n ⇒ 161/n = 2 ⇒

n = 4 ⇒ c ≈ 0.24.

5.2 Fundamental Neyman - Pearson Lemma

Theorem 5.1. (Fundamental Neyman - Pearson Lemma) We want to specify a test
of the simple hypotheses H0 : ϑ = ϑ0 vs. H1 : ϑ = ϑ1.

• Existence of UMP Test: For given α ∈ (0, 1), the following statistic:

φ(x) =


1, L(ϑ0 | x)/L(ϑ1 | x) < c

γ, L(ϑ0 | x)/L(ϑ1 | x) = c

0, L(ϑ0 | x)/L(ϑ1 | x) > c

,

where c > 0 and γ ∈ [0, 1] are constants such that πφ(ϑ0) = α, is a UMP test
of size α.

• Uniqueness of UMP Test: If φ∗ is another UMP test at significance level α,
then it follows that φ∗(x) = φ(x) for all x ∈ S such that L(ϑ0 | x) ̸= cL(ϑ1 | x).
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Proof. Without loss of generality, assume that the distribution of the sample is contin-
uous. Let φ∗ denote another test of the simple hypotheses H0 : ϑ = ϑ0 vs. H1 : ϑ = ϑ1

at significance level α. Since φ∗(x) ∈ [0, 1], we notice that:

φ(x) =

1, L(ϑ0 | x)− cL(ϑ1 | x) < 0

0, L(ϑ0 | x)− cL(ϑ1 | x) > 0
⇒

[φ∗(x)− φ(x)] [L(ϑ0 | x)− cL(ϑ1 | x)] ⩾ 0.

Then, we calculate that:

0 ⩽
∫
S
[φ∗(x)− φ(x)] [L(ϑ0 | x)− cL(ϑ1 | x)] dx

=

∫
R∗

L(ϑ0 | x)− cL(ϑ1 | x)dx−
∫
R
L(ϑ0 | x)− cL(ϑ1 | x)dx

= πφ∗(ϑ0)− cβφ∗(ϑ1)− [πφ(ϑ0)− cβφ(ϑ1)]

= πφ∗(ϑ0)− α+ c [βφ(ϑ1)− βφ∗(ϑ1)] ⩽ c [βφ(ϑ1)− βφ∗(ϑ1)] ,

(5.1)

since it holds that πφ∗(ϑ0) ⩽ α. Hence, we deduce that βφ(ϑ1) ⩾ βφ∗(ϑ1) because of
the fact that c > 0. Since the test φ has greater power than any other arbitrary test
at significance level α, we conclude that φ is a UMP test of size α.

Now, let φ∗ denote another UMP test of the simple hypotheses H0 : ϑ = ϑ0

vs. H1 : ϑ = ϑ1 at significance level α. Then, it must hold that βφ∗(ϑ1) = βφ(ϑ1).
According to equation 5.1, we know that:

0 ⩽ πφ∗(ϑ0)− α+ c [βφ(ϑ1)− βφ∗(ϑ1)] = πφ∗(ϑ0)− α,

which implies that πφ∗(ϑ0) ⩾ α. Hence, we infer that the UMP test φ∗ is also of size
α and the inequality given by equation 5.1 actually holds as an equality. Since the
function [φ∗(x)− φ(x)] [L(ϑ0 | x)− cL(ϑ1 | x)] is non-negative and its integral over S
is 0, this implies that the function is actually 0 over S. Therefore, we conclude that
φ∗(x) = φ(x) for all x ∈ S such that L(ϑ0 | x) ̸= cL(ϑ1 | x).

Note 5.5. We usually work on the log scale, so we define the following UMP test:

φ(x) =


1, ℓ(ϑ0 | x)− ℓ(ϑ1 | x) < c

γ, ℓ(ϑ0 | x)− ℓ(ϑ1 | x) = c

0, ℓ(ϑ0 | x)− ℓ(ϑ1 | x) > c

,

where c > 0 and γ ∈ [0, 1] are constants such that πφ(ϑ0) = α.

Note 5.6. In order to specify the constant c, we follow a similar procedure to the
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pivotal quantity method for the construction of CIs. More precisely, we solve the
inequality ℓ(ϑ0 | X) − ℓ(ϑ1 | X) < c with respect to some statistic T (X) whose
distribution doesn’t depend on the value ϑ0 under the null hypothesis H0 : ϑ = ϑ0.
The statistic T (X) is called a test statistic.

Example 5.3. Let X1, . . . , Xn ∼ N (µ, σ2) be a random sample with known σ2. We
want to find a UMP test for the hypotheses H0 : µ = µ0 vs. H1 : µ = µ1 with µ1 > µ0

and calculate its power. We know that:

ℓ(µ | x) = −n
2
log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(xi − µ)2.

The critical region of the test is given as follows:

ℓ(µ0 | x)− ℓ(µ1 | x) < c ⇔ 1

2σ2

[
n∑
i=1

(xi − µ1)
2 −

n∑
i=1

(xi − µ0)
2

]
< c ⇔

n
(
µ21 − µ20

)
− 2(µ1 − µ0)

n∑
i=1

xi < c∗ = 2σ2c ⇔

2(µ1 − µ0)
n∑
i=1

xi > c∗∗ = n
(
µ21 − µ20

)
− c∗

µ1>µ0⇔ x > c∗∗∗ =
c∗∗

2n(µ1 − µ0)
⇔

T (x) =
x− µ0
σ/

√
n
> cα =

c∗∗∗ − µ

σ/
√
n
.

It remains to specify the constant cα, so that the test is of size α, i.e. so that
πφ(µ0) = α. Under the null hypothesis H0, i.e. given that X1, . . . , Xn ∼ N (µ0, σ

2),
we know that T (X) = X−µ0

σ/
√
n
∼ N (0, 1). Therefore, we calculate that:

Eµ0 [φ(X)] = α ⇒ Pµ0 [T (X) > cα] = α ⇒ cα = Zα.

According to the fundamental Neyman - Pearson lemma, we arrive at the following
UMP test:

φ(x) =

1, x−µ0
σ/

√
n
> Zα

0, x−µ0
σ/

√
n
⩽ Zα

.

The power of the above test is calculated as follows:

βφ(µ1) = Pµ1(X ∈ R) = Pµ1
(
X − µ0
σ/

√
n
> Zα

)
= Pµ1

(
X − µ1
σ/

√
n
> Zα +

µ0 − µ1
σ/

√
n

)
= 1− Φ

(
Zα − µ1 − µ0

σ/
√
n

)
,

since X−µ1
σ/

√
n
∼ N (0, 1) under H1, i.e. given that X1, . . . , Xn ∼ N (µ1, σ

2).
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Note 5.7. We observe that the critical region of the previous test doesn’t depend
on the value µ1, but only on the direction of the inequality µ1 > µ0, which we used
to specify it. In other words, the test is UMP for every simple alternative hypothesis
H1 : µ = µ∗1 with µ∗1 > µ0. Hence, we infer that it’s also UMP for the one-sided
alternative hypothesis H∗

1 : µ > µ0. More generally, the following statements hold:

i. If the critical region of a UMP test φ for the simple hypotheses H0 : ϑ = ϑ0 vs.
H1 : ϑ = ϑ1 with ϑ1 > ϑ0 doesn’t depend on the value ϑ1, then the test φ is also
UMP for the hypotheses H0 : ϑ = ϑ0 vs. H∗

1 : ϑ > ϑ0.

ii. If the critical region of a UMP test φ for the simple hypotheses H0 : ϑ = ϑ0 vs.
H1 : ϑ = ϑ1 with ϑ1 < ϑ0 doesn’t depend on the value ϑ1, then the test φ is also
UMP for the hypotheses H0 : ϑ = ϑ0 vs. H∗

1 : ϑ < ϑ0.

Note 5.8. We observe that the power of the previous test is a strictly increasing
function of the statistical significance level α, a strictly increasing function of the
mean difference µ1 − µ0, a strictly decreasing function of the variance σ2 of the
observations in the sample and a strictly increasing function of the sample size n.

Example 5.4. In the setting of the previous example, we want to specify the smallest
sample size n, so that the type II error is at most equal to 0.01, if it’s known that
σ2 = 4, µ1 = µ0 + 2 and α = 1%. We demand the following:

P(Type II Error) = 1− βφ(µ1) = Φ

(
Zα − µ1 − µ0

σ/
√
n

)
⩽ 0.01 ⇒

Z0.01 −
√
n ⩽ Φ−1(0.01) = Z0.99 = −Z0.01 ⇒ n ⩾ 4Z2

0.01 ≈ 21.65.

Therefore, the smallest sample size we require is n = 22.

Example 5.5. Let X1, . . . , Xn ∼ Exp(λ) be a random sample. We want to find a
UMP test for the hypotheses H0 : λ = λ0 vs. H1 : λ < λ0 and calculate its type II
error. We consider the simple alternative hypothesis H∗

1 : λ = λ1 with λ1 < λ0, so
that we can apply the fundamental Neyman - Pearson lemma. We know that:

ℓ(λ | x) = n log λ− λ
n∑
i=1

xi.

The critical region of the test is given as follows:

ℓ(λ0 | x)− ℓ(λ1 | x) < c ⇔ n (log λ0 − log λ1)− (λ0 − λ1)
n∑
i=1

xi < c ⇔

(λ0 − λ1)

n∑
i=1

xi > c∗ = n (log λ0 − log λ1)− c
λ1<λ0⇔
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n∑
i=1

xi > c∗∗ =
c∗

λ0 − λ1
⇔ T (x) = 2λ0

n∑
i=1

xi > cα = 2λ0c
∗∗.

Under the null hypothesis H0, i.e. given that X1, . . . , Xn ∼ Exp(λ0), we know that
T (X) = 2λ0

∑n
i=1Xi ∼ χ2

2n. Therefore, we calculate that:

Eλ0 [φ(X)] = α ⇒ Pλ0 [T (X) > cα] = α ⇒ cα = χ2
2n;α.

According to the fundamental Neyman - Pearson lemma, we arrive at the following
UMP test:

φ(x) =

1, 2λ0
∑n

i=1 xi > χ2
2n;α

0, 2λ0
∑n

i=1 xi ⩽ χ2
2n;α

.

Since the critical region of the test doesn’t depend on the specific value λ1, but only
on the direction of the inequality λ1 < λ0, which we used to specify it, we infer that
it’s also UMP for the one-sided alternative hypothesis H1 : λ < λ0. For λ < λ0, we
calculate that:

Pλ(Type II Error) = Pλ(X /∈ R) = Pλ

(
2λ0

n∑
i=1

Xi ⩽ χ2
2n;α

)

= Pλ

(
2λ

n∑
i=1

Xi ⩽
λ

λ0
χ2
2n;α

)
= Fχ2

2n

(
λ

λ0
χ2
2n;α

)
.

We observe that the type II error is a strictly increasing function of λ, i.e. it increases
as λ tends towards the value λ0.

Example 5.6. Let X be a sample of size 1 with f(x;ϑ) = 1+ϑ(x−0.5) for ϑ ∈ (−2, 2)

and x ∈ (0, 1). We want to find a UMP test for the hypotheses H0 : ϑ = 0 vs.
H1 : ϑ = 1 at statistical significance level α = 10% and calculate its power. The
critical region of the test is given as follows:

L(0 | x)
L(1 | x)

< c ⇔ 1

1 + x− 0.5
< c ⇔ x > cα =

1

c
− 1

2
.

Under the null hypothesis H0, i.e. given that ϑ = 0, we observe that X ∼ U(0, 1).
Therefore, we calculate that:

E0 [φ(X)] = α ⇒ P0 (X > cα) = α ⇒ cα = 1− α = 0.9.

According to the fundamental Neyman - Pearson lemma, we arrive at the following
UMP test:

φ(x) =

1, x > 0.9

0, x ⩽ 0.9
.
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Finally, we calculate that:

βφ(1) = P1(X ∈ R) = P1(X > 0.9) =

∫ 1

0.9
(1 + x− 0.5) dx = 0.145.

Example 5.7. Let X be a sample of size 1. We want to find a UMP test for the
hypotheses H0 : X ∼ N (0, 1) vs. H1 : X ∼ Laplace

(
0, 12
)

at statistical significance
level α = 2% and calculate its power. We know that:

L0(x) =
1√
2π
e−x

2/2, L1(x) =
1

4
e−|x|/2.

The critical region of the test is given as follows:

ℓ0(x)− ℓ1(x) < c ⇔ −1

2
log(2π)− x2

2
+ 2 log 2 +

|x|
2
< c ⇔

x2 − |x| > c∗ = 2

[
2 log 2− 1

2
log(2π)− c

]
⇔

|x| > 1 +
√
1 + 4c∗

2
= cα or |x| < 1−

√
1 + 4c∗

2
= 1− 1 +

√
1 + 4c∗

2
= 1− cα.

Under the null hypothesis H0, i.e. given that X ∼ N (0, 1), we observe that:

P0 (|X| > cα) = P0 (X > cα) + P0 (X < −cα) = 1− Φ(cα) + Φ(−cα)

= 1− Φ(cα) + 1− Φ(cα) = 2 [1− Φ(cα)] ⩽ α ⇒

cα ⩾ Φ−1
(
1− α

2

)
= Zα/2 = Z0.01 ≈ 2.33 ⇒ 1− cα < 0 ⇒

P0 (|X| < 1− cα) = 0 ⇒ P0 (|X| > cα) = α ⇒ cα ≈ 2.33.

According to the fundamental Neyman - Pearson lemma, we arrive at the following
UMP test:

φ(x) =

1, |x| > 2.33

0, |x| ⩽ 2.33
.

Finally, we calculate that:

βφ = P1(|x| > cα) = 1− P1(|x| ⩽ cα) = 1− P1(−cα ⩽ x ⩽ cα)

= 1−
∫ cα

−cα

1

4
e−|x|/2dx = 1−

∫ cα

0

1

2
e−x/2dx = e−cα/2 ≈ 0.31.

Example 5.8. Let X1, . . . , X6 ∼ Bernoulli(p) be a random sample. We want to find
a UMP test for the hypotheses H0 : p = 0.2 vs. H1 : p = 0.5 at statistical significance
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level α = 5%. We know that:

ℓ(p | x) = log p
6∑
i=1

xi + log(1− p)

(
6−

6∑
i=1

xi

)
= log

p

1− p

6∑
i=1

xi + 6 log(1− p).

The critical region of the test is given as follows:

ℓ(0.2 | x)− ℓ(0.5 | x) < c ⇔ log
0.2/(1− 0.2)

0.5/(1− 0.5)

6∑
i=1

xi + 6 log
1− 0.2

1− 0.5
< c ⇔

log 4
6∑
i=1

xi > c∗ = 6 log
8

5
− c ⇔ T (x) =

6∑
i=1

xi > cα =
c∗

log 4
.

Under the null hypothesis H0, i.e. given that X1, . . . , X6 ∼ Bernoulli(0.2), we know
that T (X) =

∑6
i=1Xi ∼ Bin(6, 0.2). Therefore, we calculate that:

P0.2

(
6∑
i=1

Xi > cα

)
= 1− FT (cα),

FT (2) =
2∑

k=0

(
6

k

)
0.2k0.86−k ≈ 0.9 ⇒ P0.2

(
6∑
i=1

Xi > 2

)
> α,

FT (3) =

3∑
k=0

(
6

k

)
0.2k0.86−k ≈ 0.98 ⇒ P0.2

(
6∑
i=1

Xi > 3

)
< α.

Therefore, we set cα = 3 and specify the constant γ ∈ (0, 1) so that:

E0.2 [φ(X)] = P0.2

(
6∑
i=1

Xi > 3

)
+ γP0.2

(
6∑
i=1

Xi = 3

)
= α ⇒

γ =
FT (3)− (1− α)

FT (3)− FT (2)
≈ 0.4.

According to the fundamental Neyman - Pearson lemma, we arrive at the following
UMP test:

φ(x) =


1,

∑6
i=1 xi > 3

0.4,
∑6

i=1 xi = 3

0,
∑6

i=1 xi < 3

.

If
∑6

i=1 xi = 3, then we reject the null hypothesis H0 with probability 0.4.

5.3 Monotone Likelihood Ratio Property

If we want to specify a test for the one-sided composite hypotheses H0 : ϑ ⩽ ϑ0

vs. H1 : ϑ > ϑ0, then we may first apply the fundamental Neyman - Pearson lemma
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to specify a UMP test φ for the simple hypotheses H0 : ϑ = ϑ0 vs. H1 : ϑ = ϑ1

with ϑ1 > ϑ0. If we show that the critical region of the test φ does not depend on
the value ϑ1 and supϑ⩽ϑ0 πφ(ϑ) = πφ(ϑ0), i.e. the power function πφ(ϑ) is increasing
with respect to ϑ on (−∞, ϑ0], then φ is a UMP test for the composite hypotheses
H0 : ϑ ⩽ ϑ0 vs. H1 : ϑ > ϑ0. The same also applies to the one-sided hypotheses
H0 : ϑ ⩾ ϑ0 vs. H1 : ϑ < ϑ0, i.e. it suffices to apply the fundamental Neyman -
Pearson lemma to specify a UMP test φ for the simple hypotheses H0 : ϑ = ϑ0 vs.
H1 : ϑ = ϑ1 with ϑ1 < ϑ0. Then, it suffices to check that the critical region of the
test φ does not depend on the value ϑ1 and the power function πφ(ϑ) is decreasing
with respect to ϑ on [ϑ0,∞).

Definition 5.5. We say that the distribution of the sample X has the monotone
likelihood ratio (MLR) property with respect to some statistic T (X) if the likeli-
hood ratio λ(x) = L(ϑ2|x)

L(ϑ1|x) is an increasing function with respect to T (x) on the set
{x ∈ S : L(ϑ1 | x) > 0 or L(ϑ2 | x) > 0} for every pair ϑ1, ϑ2 ∈ Θ with ϑ1 < ϑ2.

Note 5.9. If the likelihood ratio λ(x) is a decreasing function with respect to some
statistic T (x), then it’s obviously an increasing function with respect to −T (x), so the
distribution of the sample has the MLR property with respect to T ∗(X) = −T (X).

Proposition 5.1. If the joint distribution of the sample X belongs to the one-
parameter multivariate exponential family with f(x;ϑ) = h(x)eQ(ϑ)T (x)−A(ϑ) and the
function Q : Θ → R is strictly increasing, then the distribution of the sample has the
MLR property with respect to the statistic T (X).

Proof. Let ϑ1, ϑ2 ∈ Θ with ϑ1 < ϑ2. Then, we calculate that:

λ(x) =
L(ϑ2 | x)
L(ϑ1 | x)

=
h(x)eQ(ϑ2)T (x)−A(ϑ2)

h(x)eQ(ϑ1)T (x)−A(ϑ1)
= eA(ϑ1)−A(ϑ2)−[Q(ϑ1)−Q(ϑ2)]T (x)︸ ︷︷ ︸

g(T (x))

.

Since Q is strictly increasing, we know that Q(ϑ1) − Q(ϑ2) < 0. Let t1 ⩽ t2. Then,
we infer that:

[Q(ϑ1)−Q(ϑ2)] t1 ⩾ [Q(ϑ1)−Q(ϑ2)] t2 ⇒ g(t1) ⩽ g(t2).

Therefore, we conclude that the likelihood ratio λ(X) is an increasing function with
respect to the statistic T (x).

Note 5.10. If the function Q : Θ → R is strictly decreasing, then Q∗(ϑ) = −Q(ϑ)

is obviously a strictly increasing function, so the distribution of the sample has the
MLR property with respect to T ∗(X) = −T (X).

Lemma 5.1. If h1, h2 are 2 increasing functions and X is a random variable, then it
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holds that Cov [h1(X), h2(X)] ⩾ 0.

Proof. Let X1, X2 be 2 independent random variables with the same distribution as
X. If X1 ⩽ X2, then it holds that h1(X1) − h1(X2) ⩽ 0 and h2(X1) − h2(X2) ⩽ 0.
Similarly, if X1 ⩾ X2, then it holds that h1(X1)−h1(X2) ⩾ 0 and h2(X1)−h2(X2) ⩾ 0.
In both cases, it follows that [h1(X1)− h1(X2)] [h2(X1)− h2(X2)] ⩾ 0. Since the
random variables X1, X2 have the same distribution as X, we calculate that:

0 ⩽ E [(h1(X1)− h1(X2)) (h2(X1)− h2(X2))]

= E [h1(X1)h2(X1)] + E [h1(X2)h2(X2)]

− E [h1(X1)]E [h2(X2)]− E [h1(X2)]E [h2(X1)]

= 2E [h1(X)h2(X)]− 2E [h1(X)]E [h2(X)] = 2Cov [h1(X), h2(X)] .

Theorem 5.2. (Karlin - Rubin) Suppose that the distribution of the sample X has
the MLR property with respect to some statistic T (X).

i. We want to specify a test for the hypotheses H0 : ϑ ⩽ ϑ0 vs. H1 : ϑ > ϑ0. For
given α ∈ (0, 1), a UMP test of size α is given by:

φ(x) =


1, T (x) > c

γ, T (x) = c

0, T (x) < c

.

ii. We want to specify a test for the hypotheses H0 : ϑ ⩾ ϑ0 vs. H1 : ϑ < ϑ0. For
given α ∈ (0, 1), a UMP test of size α is given by:

φ(x) =


1, T (x) < c

γ, T (x) = c

0, T (x) > c

.

The constants c ∈ R and γ ∈ [0, 1] are specified so that πφ(ϑ0) = α.

Proof. Without loss of generality, assume that the distribution of the sample is con-
tinuous and we are interested in the first case. Let ϑ < ϑ0. Then, we calculate
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that:

πφ(ϑ0)− πφ(ϑ) = Eϑ0 [φ(X)]− Eϑ [φ(X)] =

∫
S
φ(x) [f(x;ϑ0)− f(x;ϑ)] dx

=

∫
S
φ(x)

[
f(x;ϑ0)

f(x;ϑ)
− 1

]
f(x;ϑ)dx = Eϑ

[
φ(X)

(
f(X;ϑ0)

f(X;ϑ)
− 1

)]
.

We observe that the test φ is an increasing function with respect to T (X). Since
ϑ < ϑ0, we also know that the likelihood ratio f(X;ϑ0)

f(X;ϑ) is an increasing function with
respect to T (X). Furthermore, we observe that:

Eϑ
[
f(X;ϑ0)

f(X;ϑ)

]
=

∫
S

f(x;ϑ0)

f(x;ϑ)
f(x;ϑ)dx =

∫
S
f(x;ϑ0)dx = 1 ⇒

Eϑ
[
f(X;ϑ0)

f(X;ϑ)
− 1

]
= 0.

According to the previous lemma, we infer that:

0 ⩽ Covϑ
[
φ(X),

f(X;ϑ0)

f(X;ϑ)
− 1

]
= Eϑ

[
φ(X)

(
f(X;ϑ0)

f(X;ϑ)
− 1

)]
= πφ(ϑ0)− πφ(ϑ),

which implies that πφ(ϑ) ⩽ πφ(ϑ0) = α for ϑ < ϑ0. Therefore, we conclude that φ is
a UMP test of size α.

Note 5.11. If we applied the fundamental Neyman - Pearson lemma for the simple
hypotheses H0 : ϑ = ϑ0 vs. H1 : ϑ = ϑ1 with ϑ1 < ϑ0, we would need to solve the
inequality L(ϑ0 | x) < cL(ϑ1 | x) to specify the critical region of the test. Since
ϑ1 < ϑ0, the likelihood ratio L(ϑ0|x)

L(ϑ1|x) is an increasing function with respect to T (X)

according to the MLR property. Therefore, it holds that L(ϑ0 | x) < cL(ϑ1 | x) if and
only if T (X) > cα for some other constant cα. A similar observation can be made in
the first case.

Example 5.9. Let X1, . . . , Xn ∼ N
(
µ, σ2

)
be a random sample with known µ. We

want to specify a UMP test for the hypotheses H0 : σ2 ⩾ σ20 vs. H1 : σ2 < σ20. We
observe that:

f
(
x;σ2

)
= (2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
log σ2

}
,

where Q(σ2) = − 1
2σ2 is a strictly increasing function and T (x) =

∑n
i=1(xi − µ)2, so

the distribution of the sample has the MLR property with respect to the statistic
T (X). According to the Karlin - Rubin theorem, the critical region of the test is
given by T (x) < c. It remains to specify the constant c so that πφ

(
σ20
)
= α. Given
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that X1, . . . , Xn ∼ N (µ, σ20), we know that:

Q (X) =
1

σ20
T (X) =

1

σ20

n∑
i=1

(Xi − µ)2 ∼ χ2
n.

Therefore, we calculate that:

T (X) < c ⇔ Q (X) =
1

σ20
T (X) < cα =

c

σ20
,

Eσ2
0
[φ(X)] = α ⇒ Pσ2

0
(Q < cα) = α ⇒ cα = χ2

n;1−α.

Finally, we arrive at the following UMP test:

φ(x) =

1,
∑n

i=1(xi − µ)2 < σ20χ
2
n;1−α

0,
∑n

i=1(xi − µ)2 ⩾ σ20χ
2
n;1−α

.

Example 5.10. Let X1, . . . , Xn ∼ Beta(1, ϑ) be a random sample with ϑ > 0 and
f(x;ϑ) = ϑ(1−x)ϑ−1 for x ∈ (0, 1). We want to specify a UMP test for the hypotheses
H0 : ϑ ⩽ ϑ0 vs. H1 : ϑ > ϑ0. We observe that:

f(x;ϑ) = exp

{
(1− ϑ)

n∑
i=1

log
1

1− xi
+ n log ϑ

}
,

where Q(ϑ) = 1 − ϑ is a strictly decreasing function and T (x) = −
∑n

i=1 log(1 − xi),
so the distribution of the sample has the MLR property with respect to the statistic
T ∗(X) = −T (X). According to the Karlin - Rubin theorem, the critical region of the
test is given by T ∗(x) > c. Given that X1, . . . , Xn ∼ Beta(1, ϑ0), we know that:

T (X) = −
n∑
i=1

log(1−Xi) ∼ Gamma(n, ϑ0), Q (X) = 2ϑ0T (X) ∼ χ2
2n,

according to example 4.7 (page 92). Therefore, we calculate that:

T ∗(X) > c ⇔ Q (X) = 2ϑ0T (X) = −2ϑ0T
∗(X) < cα = −2ϑ0c,

Eϑ0 [φ(X)] = α ⇒ Pϑ0 (Q < cα) = α ⇒ cα = χ2
2n;1−α.

Finally, we arrive at the following UMP test:

φ(x) =

1, −2ϑ0
∑n

i=1 log(1− xi) < χ2
2n;1−α

0, −2ϑ0
∑n

i=1 log(1− xi) ⩾ χ2
2n;1−α

.

Example 5.11. Let X1, . . . , Xn ∼ Pareto(k, λ) be a random sample with k > 0,
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known λ > 0, f(x; k) = λkλ

xλ+1 and F (x; k) = 1−
(
k
x

)λ for x > k. We want to specify a
UMP test for the hypotheses H0 : k ⩾ k0 vs. H1 : k < k0. For k1 < k2, we calculate
the following likelihood ratio:

L(k2 | x)
L(k1 | x)

=

(
k2
k1

)nλ 1(k2,∞)

(
x(1)

)
1(k1,∞)

(
x(1)

) = λ(T ), T (x) = x(1).

Let t1, t2 ∈ (k1,∞) with t1 ⩽ t2. We distinguish the following cases:

• For k1 < t1 ⩽ t2 < k2, it holds that λ(t1) = 0 = λ(t2).

• For k1 < t1 < k2 < t2, it holds that λ(t1) = 0 <
(
k2
k1

)nλ
= λ(t2).

• For k1 < k2 < t1 ⩽ t2, it holds that λ(t1) =
(
k2
k1

)nλ
= λ(t2).

Therefore, the function λ(t) is increasing on (k1,∞), i.e. the distribution of the
sample has the MLR property with respect to the statistic T (X) = X(1). According
to the Karlin - Rubin theorem, the critical region of the test is given by T (x) < c.
Given that X1, . . . , Xn ∼ Pareto(k0, λ), we know that:

Q(X) =
1

k0
T (X) =

1

k0
X(1) ∼ Pareto(1, nλ),

according to example 4.4 (page 90). Therefore, we calculate that:

T (X) < c ⇔ Q(X) =
1

k0
T (X) < cα =

c

k0
,

Ek0 [φ(X)] = α ⇒ Pk0 (Q < cα) = α ⇒

1− 1

cnλα
= α ⇒ cα = (1− α)−1/nλ.

Finally, we arrive at the following UMP test:

φ(x) =

1, x(1) < k0(1− α)−1/nλ

0, x(1) ⩾ k0(1− α)−1/nλ
.

Example 5.12. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. We want to specify a
UMP test for the hypotheses H0 : ϑ ⩽ ϑ0 vs. H1 : ϑ > ϑ0. For ϑ1 < ϑ2, we calculate
the following likelihood ratio:

L(ϑ2 | x)
L(ϑ1 | x)

=

(
ϑ1
ϑ2

)n 1(0,ϑ2)

(
x(n)

)
1(0,ϑ1)

(
x(n)

) = λ(T ), T (x) = x(n).

Let t1, t2 ∈ (0, ϑ2) with t1 ⩽ t2. We distinguish the following cases:

• For 0 < t1 ⩽ t2 < ϑ1 < ϑ2, it holds that λ(t1) =
(
ϑ1
ϑ2

)n
= λ(t2).
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• For 0 < t1 < ϑ1 < t2 < ϑ2, it holds that λ(t1) =
(
ϑ1
ϑ2

)n
<∞ = λ(t2).

• For 0 < ϑ1 < t1 ⩽ t2 < ϑ2, it holds that λ(t1) = ∞ = λ(t2).

Therefore, the function λ(t) is increasing on (0, ϑ2), i.e. the distribution of the sample
has the MLR property with respect to the statistic T (X) = X(n). According to the
Karlin - Rubin theorem, the critical region of the test is given by T (x) > c. Given
that X1, . . . , Xn ∼ U(0, ϑ0), we know that:

Q(X) =
1

ϑ0
T (X) =

1

ϑ0
X(n) ∼ Beta(n, 1),

according to note 4.4 (page 86). Therefore, we calculate that:

T (X) > c ⇔ Q(X) =
1

ϑ0
T (X) > cα =

c

ϑ0
,

Eϑ0 [φ(X)] = α ⇒ Pϑ0 (Q > cα) = α ⇒ 1− cna = α ⇒ cα = (1− α)1/n.

Finally, we arrive at the following UMP test:

φ(x) =

1, x(n) > ϑ0(1− α)1/n

0, x(n) ⩽ ϑ0(1− α)1/n
.

Theorem 5.3∗. Suppose that the joint distribution of the sample X belongs to the
one-parameter multivariate exponential family with f(x;ϑ) = h(x)eQ(ϑ)T (x)−A(ϑ) and
the function Q : Θ → R is strictly monotone. We want to specify a test for the
two-sided composite hypotheses H0 : ϑ ⩽ ϑ1 or ϑ ⩾ ϑ2 vs. H1 : ϑ1 < ϑ < ϑ2. For
given α ∈ (0, 1), a UMP test of size α is given by:

φ(x) =



1, c1 < T (x) < c2

γ1, T (x) = c1

γ2, T (x) = c2

0, T (x) < c1 or T (x) > c2

.

The constants c1, c2 ∈ R, γ1, γ2 ∈ [0, 1] are specified so that πφ(ϑ1) = πφ(ϑ2) = α.

5.4 Generalized Likelihood Ratio Tests

Definition 5.6. Consider the general hypotheses H0 : ϑ ∈ Θ0 vs. H1 : ϑ ∈ Θ1, where
Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅. The following statistic:

λ∗(x) =
supϑ∈Θ0

L(ϑ | x)
supϑ∈Θ L(ϑ | x)

,
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is called the generalized likelihood ratio.

Note 5.12. It obviously holds that 0 ⩽ λ∗(x) ⩽ 1 ∀x ∈ S. If the MLEs ϑ̂ of ϑ and
ϑ̂0 = argmaxϑ∈Θ0

L(ϑ | x) of ϑ under the null hypothesis H0 : ϑ ∈ Θ0 exist, then it
follows that:

λ∗(x) =
L(ϑ̂0 | x)
L(ϑ̂ | x)

.

Generalized Likelihood Ratio Criterion: A test of size α for the general hy-
potheses H0 : ϑ ∈ Θ0 vs. H1 : ϑ ∈ Θ1, where Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅, is given
by:

φ(x) =


1, λ∗(x) < c

γ, λ∗(x) = c

0, λ∗(x) > c

.

The constants c, γ ∈ [0, 1] are specified so that supϑ∈Θ0
πφ (ϑ) = α.

Note 5.13. Intuitively, the numerator of the ratio λ∗(x) expresses the maximum
likelihood under the null hypothesis, while the denominator expresses the maximum
likelihood as a whole. If the numerator is much smaller than the denominator, i.e.
the ratio λ∗(x) is close to 0, then it’s not very probable that the sample X follows a
distribution with parameter value ϑ which belongs to the set Θ0, so we reject H0. If
the numerator is close enough to the denominator, i.e. the ratio λ∗(x) is close to 1,
then we cannot distinguish how probable it is that the sample X follows a distribution
with parameter value ϑ which belongs to the set Θ0 compared to a parameter value
which belongs to the entire parameter space Θ, so we don’t reject H0.

Example 5.13. Let X1, . . . , Xn ∼ U(0, ϑ) be a random sample. We want to specify
a test for the hypotheses H0 : ϑ = ϑ0 vs. H1 : ϑ ̸= ϑ0 and calculate its power.
According to example 3.42 (page 75), we know that the statistic ϑ̂(X) = X(n) is the
MLE of ϑ. Since the null hypothesis H0 is simple, we infer that ϑ̂0 = ϑ0. Therefore,
we calculate that:

λ∗(x) =
L(ϑ0 | x)
L(ϑ̂ | x)

=
ϑ−n0 1[0,ϑ0]

(
x(n)

)[
x(n)

]−n
1[0,x(n)]

(
x(n)

) =


[
x(n)/ϑ0

]n
, x(n) ⩽ ϑ0

0, x(n) > ϑ0

.

According to the generalized likelihood ratio criterion, the critical region of the test
is given by:

λ∗(x) < c ⇔
[
x(n)

ϑ0

]n
< c or x(n) > ϑ0 ⇔ x(n) < ϑ0c

1/n or x(n) > ϑ0.
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Under the null hypothesis H0, i.e. given that X1, . . . , Xn ∼ U(0, ϑ0), we know that:

Q(X) =
1

ϑ0
ϑ̂(X) =

1

ϑ0
X(n) ∼ Beta(n, 1),

according to note 4.4 (page 86). Hence, we calculate that:

X(n) < ϑ0c
1/n or X(n) > ϑ0 ⇔ Q < cα = c1/n or Q > 1,

Eϑ0 [φ(X)] = α ⇒ Pϑ0 (Q < cα) + Pϑ0(Q > 1) = α ⇒ cα = α1/n.

Therefore, we arrive at the following test:

φ(x) =

1, x(n) < ϑ0α
1/n or x(n) > ϑ0

0, ϑ0α
1/n ⩽ x(n) ⩽ ϑ0

.

For ϑ > ϑ0, we calculate that:

βφ(ϑ) = Pϑ
(
X(n) < ϑ0α

1/n
)
+ Pϑ

(
X(n) > ϑ0

)
= Pϑ

(
1

ϑ
X(n) < α1/nϑ0

ϑ

)
+ Pϑ

(
1

ϑ
X(n) >

ϑ0
ϑ

)
= α

(
ϑ0
ϑ

)n
+ 1−

(
ϑ0
ϑ

)n
= 1− (1− α)

(
ϑ0
ϑ

)n
.

For ϑ < ϑ0, we calculate that:

Pϑ
(
X(n) > ϑ0

)
= Pϑ

(
1

ϑ
X(n) >

ϑ0
ϑ

)
= 0,

Pϑ
(
X(n) < ϑ0α

1/n
)
= Pϑ

(
1

ϑ
X(n) < α1/nϑ0

ϑ

)
=

α (ϑ0/ϑ)
n , ϑ > ϑ0α

1/n

1, ϑ ⩽ ϑ0α
1/n

.

Finally, we conclude that:

βφ(ϑ) =


1, ϑ ⩽ ϑ0α

1/n

α (ϑ0/ϑ)
n , ϑ0α

1/n < ϑ ⩽ ϑ0

1− (1− α) (ϑ0/ϑ)
n , ϑ > ϑ0

.

Proposition 5.2∗. Suppose we want to specify a test for the hypotheses H0 : ϑ = ϑ0

vs. H1 : ϑ ̸= ϑ0 or the hypotheses H0 : ϑ1 ⩽ ϑ ⩽ ϑ2 vs. H1 : ϑ < ϑ1 or ϑ > ϑ2. Then,
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the generalized likelihood ratio criterion leads to a test of size α of the following form:

φ(x) =



1, T (x) < c1 or T (x) > c2

γ1, T (x) = c1

γ2, T (x) = c2

0, c1 < T (x) < c2

.

The constants c1, c2 ∈ R and γ1, γ2 ∈ [0, 1] are specified so that πφ(ϑ0) = α or
πφ(ϑ1) = πφ(ϑ2) = α respectively.

Theorem 5.4∗. (Wilks) We want to specify a test for the hypotheses H0 : ϑ ∈ Θ0

vs. H1 : ϑ ∈ Θ1, where Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅. Suppose that the regularity
conditions for the asymptotic efficiency of the MLE of ϑ are satisfied. If d is the
number of restrictions that the null hypothesis H0 sets on the parameter space Θ,
then it follows that:

Dn(X) = −2 log λ∗n(X) = −2
[
ℓ(ϑ̂0 | X)− ℓ(ϑ̂ | X)

]
d→ Y ∼ χ2

d.

Therefore, we arrive at the following asymptotic test of size α:

φ(x) =

1, −2 log λ∗n(x) > χ2
d;α

0, −2 log λ∗n(x) ⩽ χ2
d;α

.

5.5 Statistical Hypothesis Tests for a Normal Population

Let X1, . . . , Xn ∼ N
(
µ, σ2

)
be a random sample. We want to specify tests for

the hypotheses H0 : µ = µ0 vs. H1 : µ ̸= µ0. We distinguish 3 cases which we present
throughout this paragraph.

Example 5.14. The variance σ2 is known. We know that X ∼ N
(
µ, 1nσ

2
)

is the
MLE of µ. We calculate that:

log λ∗(x) = ℓ(µ0 | x)− ℓ(µ̂ | x) = − 1

2σ2

[
n∑
i=1

(xi − µ0)
2 −

n∑
i=1

(xi − x)2

]

= − 1

2σ2

(
nµ20 − 2µ0

n∑
i=1

xi + 2x
n∑
i=1

xi − nx2

)
= − n

2σ2
(
µ20 − 2µ0x+ 2x2 − x2

)
= − n

2σ2
(x− µ0)

2 .

According to the generalized likelihood ratio criterion, the critical region of the test
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is given by:

λ∗(x) < c ⇔ (x− µ0)
2

σ2/n
> c∗ = −2 log c ⇔

∣∣∣∣x− µ0
σ/

√
n

∣∣∣∣ > cα =
√
c∗.

Under the null hypothesis H0, i.e. given that X1, . . . , Xn ∼ N (µ0, σ
2), we know that

Z = X−µ0
σ/

√
n
∼ N (0, 1). Therefore, we calculate that:

Eµ0 [φ(X)] = Pµ0
(∣∣∣∣X − µ0

σ/
√
n

∣∣∣∣ > cα

)
= Pµ0(Z > cα) + Pµ0(Z < −cα)

= 1− Φ(cα) + Φ(−cα) = 1− Φ(cα) + 1− Φ(cα) = 2 [1− Φ(cα)] = α,

Φ(cα) = 1− α

2
⇒ cα = Φ−1

(
1− α

2

)
= Zα/2.

Finally, we arrive at the following test of size α:

φ(x) =

1,
∣∣∣ x−µ0σ/

√
n

∣∣∣ > Zα/2

0,
∣∣∣ x−µ0σ/

√
n

∣∣∣ ⩽ Zα/2

.

Note 5.14. In the previous test, we observe that:

A =

{
x ∈ Rn :

∣∣∣∣x− µ0
σ/

√
n

∣∣∣∣ ⩽ Zα/2

}
=

{
x ∈ Rn : x− Zα/2

σ√
n
⩽ µ0 ⩽ x+ Zα/2

σ√
n

}
=

{
x ∈ Rn : µ0 ∈ Iµ;1−α(x) =

[
x− Zα/2

σ√
n
, x+ Zα/2

σ√
n

]}
,

where Iµ;1−α(x) is the 100(1 − α)% equal-tailed CI for the mean µ. In other words,
we don’t reject H0 : µ = µ0 against H1 : µ ̸= µ0 at statistical significance level α
if and only if the value µ0 lies inside the 100(1 − α)% equal-tailed CI for µ. This
connection between CIs and tests with two-sided alternative hypotheses provides us
with an alternative method of specifying the critical region of tests with two-sided
alternative hypotheses.

Example 5.15. The variance σ2 is unknown. According to example 3.44 (page 76),
we know that µ̂ = x and σ̂2 = n−1

n S2. Under the null hypothesis H0, i.e. given that
µ = µ0, we know that σ̂20 = 1

n

∑n
i=1(xi − µ0)

2, according to example 3.38 (page 73).
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Therefore, we calculate that:

σ̂20 =
1

n

n∑
i=1

(xi − x+ x− µ0)
2

=
1

n

[
n∑
i=1

(xi − x)2 + n(x− µ0)
2 + 2(x− µ0)

n∑
i=1

(xi − x)

]

= σ̂2 + (x− µ0)
2 +

2

n
(x− µ0)

(
n∑
i=1

xi − nx

)
= σ̂2 + (x− µ0)

2,

log λ∗(x) = ℓ
(
µ0, σ̂

2
0 | x

)
− ℓ

(
µ̂, σ̂2 | x

)
= −n

2
log

σ̂20
σ̂2

− 1

2σ̂20

n∑
i=1

(xi − µ0)
2 +

1

2σ̂2

n∑
i=1

(xi − x)2

= −n
2
log

[
1 +

(x− µ0)
2

σ̂2

]
− n

2
+
n

2
= −n

2
log

[
1 +

n(x− µ0)
2

(n− 1)s2

]
.

According to the generalized likelihood ratio criterion, the critical region of the test
is given by:

λ∗(x) < c ⇔ −n
2
log

[
1 +

n(x− µ0)
2

(n− 1)s2

]
< c∗ = log c ⇔

1 +
n(x− µ0)

2

(n− 1)s2
> c∗∗ = e−2c∗/n ⇔ (x− µ0)

2

s2/n
> c∗∗∗ = (n− 1) (c∗∗ − 1) ⇔∣∣∣∣x− µ0

s/
√
n

∣∣∣∣ > cα =
√
c∗∗∗.

Under the null hypothesis H0, we know that T = X−µ0
S/

√
n
∼ tn−1, according to example

4.13 (page 95). Therefore, we calculate that:

Eµ0 [φ(X)] = Pµ0
(∣∣∣∣X − µ0

S/
√
n

∣∣∣∣ > cα

)
= Pµ0(T > cα) + Pµ0(T < −cα)

= 1− FT (cα) + FT (−cα) = 2 [1− FT (cα)] = α,

FT (cα) = 1− α

2
⇒ cα = F−1

T

(
1− α

2

)
= tn−1;α/2.

Finally, we arrive at the following test of size α:

φ(x) =

1,
∣∣∣x−µ0s/

√
n

∣∣∣ > tn−1;α/2

0,
∣∣∣x−µ0s/

√
n

∣∣∣ ⩽ tn−1;α/2

.

Example 5.16. The variance σ2 is unknown and we want to specify an asymptotic
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test. Under the null hypothesis H0, we know that:

Tn(X) =
Xn − µ0
Sn/

√
n

d→ Z ∼ N (0, 1),

according to example 4.23 (page 101). Therefore, we arrive at the following asymp-
totic test of size α:

φ(x) =

1,
∣∣∣x−µ0s/

√
n

∣∣∣ > Zα/2

0,
∣∣∣x−µ0s/

√
n

∣∣∣ ⩽ Zα/2

.

Alternatively, we know that:

Dn(X) = −2 log λ∗n(X) = n log

[
1 +

(X − µ0)
2

σ̂2

]
d→ Y ∼ χ2

1,

according to Wilks’ theorem. Hence, we arrive at the following asymptotic test of
size α:

φ(x) =

1, n log
[
1 + (x−µ0)2

σ̂2

]
> χ2

1;α

0, n log
[
1 + (x−µ0)2

σ̂2

]
⩽ χ2

1;α

.
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